Metamath Proof Explorer


Theorem cssmre

Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one isnot usually an algebraic closure system df-acs : consider the Hilbert space of sequences NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel . (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssmre.v V=BaseW
cssmre.c C=ClSubSpW
Assertion cssmre WPreHilCMooreV

Proof

Step Hyp Ref Expression
1 cssmre.v V=BaseW
2 cssmre.c C=ClSubSpW
3 1 2 cssss xCxV
4 velpw x𝒫VxV
5 3 4 sylibr xCx𝒫V
6 5 a1i WPreHilxCx𝒫V
7 6 ssrdv WPreHilC𝒫V
8 1 2 css1 WPreHilVC
9 intss1 zxxz
10 eqid ocvW=ocvW
11 10 ocv2ss xzocvWzocvWx
12 10 ocv2ss ocvWzocvWxocvWocvWxocvWocvWz
13 9 11 12 3syl zxocvWocvWxocvWocvWz
14 13 ad2antll WPreHilxCxyocvWocvWxzxocvWocvWxocvWocvWz
15 simprl WPreHilxCxyocvWocvWxzxyocvWocvWx
16 14 15 sseldd WPreHilxCxyocvWocvWxzxyocvWocvWz
17 simpl2 WPreHilxCxyocvWocvWxzxxC
18 simprr WPreHilxCxyocvWocvWxzxzx
19 17 18 sseldd WPreHilxCxyocvWocvWxzxzC
20 10 2 cssi zCz=ocvWocvWz
21 19 20 syl WPreHilxCxyocvWocvWxzxz=ocvWocvWz
22 16 21 eleqtrrd WPreHilxCxyocvWocvWxzxyz
23 22 expr WPreHilxCxyocvWocvWxzxyz
24 23 alrimiv WPreHilxCxyocvWocvWxzzxyz
25 vex yV
26 25 elint yxzzxyz
27 24 26 sylibr WPreHilxCxyocvWocvWxyx
28 27 ex WPreHilxCxyocvWocvWxyx
29 28 ssrdv WPreHilxCxocvWocvWxx
30 simp1 WPreHilxCxWPreHil
31 intssuni xxx
32 31 3ad2ant3 WPreHilxCxxx
33 simp2 WPreHilxCxxC
34 7 3ad2ant1 WPreHilxCxC𝒫V
35 33 34 sstrd WPreHilxCxx𝒫V
36 sspwuni x𝒫VxV
37 35 36 sylib WPreHilxCxxV
38 32 37 sstrd WPreHilxCxxV
39 1 2 10 iscss2 WPreHilxVxCocvWocvWxx
40 30 38 39 syl2anc WPreHilxCxxCocvWocvWxx
41 29 40 mpbird WPreHilxCxxC
42 7 8 41 ismred WPreHilCMooreV