Metamath Proof Explorer


Theorem curfv

Description: Value of currying. (Contributed by Brendan Leahy, 2-Jun-2021)

Ref Expression
Assertion curfv FFnV×WAVBWWXcurryFAB=AFB

Proof

Step Hyp Ref Expression
1 dffn5 FFnV×WF=zV×WFz
2 cureq F=zV×WFzcurryF=curryzV×WFz
3 1 2 sylbi FFnV×WcurryF=curryzV×WFz
4 3 adantr FFnV×WBWcurryF=curryzV×WFz
5 fveq2 z=xyFz=Fxy
6 5 mpompt zV×WFz=xV,yWFxy
7 fvex FxyV
8 7 rgen2w xVyWFxyV
9 8 a1i FFnV×WBWxVyWFxyV
10 ne0i BWW
11 10 adantl FFnV×WBWW
12 6 9 11 mpocurryd FFnV×WBWcurryzV×WFz=xVyWFxy
13 4 12 eqtrd FFnV×WBWcurryF=xVyWFxy
14 13 3adant2 FFnV×WAVBWcurryF=xVyWFxy
15 14 fveq1d FFnV×WAVBWcurryFA=xVyWFxyA
16 15 adantr FFnV×WAVBWWXcurryFA=xVyWFxyA
17 mptexg WXyWFAyV
18 opeq1 x=Axy=Ay
19 18 fveq2d x=AFxy=FAy
20 19 mpteq2dv x=AyWFxy=yWFAy
21 eqid xVyWFxy=xVyWFxy
22 20 21 fvmptg AVyWFAyVxVyWFxyA=yWFAy
23 17 22 sylan2 AVWXxVyWFxyA=yWFAy
24 23 3ad2antl2 FFnV×WAVBWWXxVyWFxyA=yWFAy
25 16 24 eqtrd FFnV×WAVBWWXcurryFA=yWFAy
26 25 fveq1d FFnV×WAVBWWXcurryFAB=yWFAyB
27 opeq2 y=BAy=AB
28 27 fveq2d y=BFAy=FAB
29 eqid yWFAy=yWFAy
30 fvex FABV
31 28 29 30 fvmpt BWyWFAyB=FAB
32 df-ov AFB=FAB
33 31 32 eqtr4di BWyWFAyB=AFB
34 33 3ad2ant3 FFnV×WAVBWyWFAyB=AFB
35 34 adantr FFnV×WAVBWWXyWFAyB=AFB
36 26 35 eqtrd FFnV×WAVBWWXcurryFAB=AFB