Metamath Proof Explorer


Theorem cvexchlem

Description: Lemma for cvexchi . (Contributed by NM, 10-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses chpssat.1 AC
chpssat.2 BC
Assertion cvexchlem ABBAAB

Proof

Step Hyp Ref Expression
1 chpssat.1 AC
2 chpssat.2 BC
3 1 2 chincli ABC
4 cvpss ABCBCABBABB
5 3 2 4 mp2an ABBABB
6 3 2 chpssati ABBxHAtomsxB¬xAB
7 5 6 syl ABBxHAtomsxB¬xAB
8 ssin xAxBxAB
9 ancom xAxBxBxA
10 8 9 bitr3i xABxBxA
11 10 baibr xBxAxAB
12 11 notbid xB¬xA¬xAB
13 12 biimpar xB¬xAB¬xA
14 chcv1 ACxHAtoms¬xAAAx
15 1 14 mpan xHAtoms¬xAAAx
16 15 biimpa xHAtoms¬xAAAx
17 13 16 sylan2 xHAtomsxB¬xABAAx
18 17 adantrr xHAtomsxB¬xABABBAAx
19 atelch xHAtomsxC
20 chjass ACABCxCAABx=AABx
21 1 3 20 mp3an12 xCAABx=AABx
22 1 2 chabs1i AAB=A
23 22 oveq1i AABx=Ax
24 21 23 eqtr3di xCAABx=Ax
25 24 adantr xCxB¬xABABBAABx=Ax
26 ancom xB¬xAB¬xABxB
27 chnle ABCxC¬xABABABx
28 3 27 mpan xC¬xABABABx
29 inss2 ABB
30 29 biantrur xBABBxB
31 chlub ABCxCBCABBxBABxB
32 3 2 31 mp3an13 xCABBxBABxB
33 30 32 bitrid xCxBABxB
34 28 33 anbi12d xC¬xABxBABABxABxB
35 26 34 bitrid xCxB¬xABABABxABxB
36 chjcl ABCxCABxC
37 3 36 mpan xCABxC
38 cvnbtwn2 ABCBCABxCABBABABxABxBABx=B
39 3 2 38 mp3an12 ABxCABBABABxABxBABx=B
40 37 39 syl xCABBABABxABxBABx=B
41 40 com23 xCABABxABxBABBABx=B
42 35 41 sylbid xCxB¬xABABBABx=B
43 42 imp32 xCxB¬xABABBABx=B
44 43 oveq2d xCxB¬xABABBAABx=AB
45 25 44 eqtr3d xCxB¬xABABBAx=AB
46 19 45 sylan xHAtomsxB¬xABABBAx=AB
47 18 46 breqtrd xHAtomsxB¬xABABBAAB
48 47 exp32 xHAtomsxB¬xABABBAAB
49 48 rexlimiv xHAtomsxB¬xABABBAAB
50 7 49 mpcom ABBAAB