Metamath Proof Explorer


Theorem cvmcov2

Description: The covering map property can be restricted to an open subset. (Contributed by Mario Carneiro, 7-Jul-2015)

Ref Expression
Hypothesis cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
Assertion cvmcov2 FCCovMapJUJPUx𝒫UPxSx

Proof

Step Hyp Ref Expression
1 cvmcov.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 simp1 FCCovMapJUJPUFCCovMapJ
3 simp3 FCCovMapJUJPUPU
4 simp2 FCCovMapJUJPUUJ
5 elunii PUUJPJ
6 3 4 5 syl2anc FCCovMapJUJPUPJ
7 eqid J=J
8 1 7 cvmcov FCCovMapJPJyJPySy
9 2 6 8 syl2anc FCCovMapJUJPUyJPySy
10 inss2 yUU
11 vex yV
12 11 inex1 yUV
13 12 elpw yU𝒫UyUU
14 10 13 mpbir yU𝒫U
15 14 a1i FCCovMapJUJPUyJPySyyU𝒫U
16 simprrl FCCovMapJUJPUyJPySyPy
17 3 adantr FCCovMapJUJPUyJPySyPU
18 16 17 elind FCCovMapJUJPUyJPySyPyU
19 simprrr FCCovMapJUJPUyJPySySy
20 2 adantr FCCovMapJUJPUyJPySyFCCovMapJ
21 cvmtop2 FCCovMapJJTop
22 20 21 syl FCCovMapJUJPUyJPySyJTop
23 simprl FCCovMapJUJPUyJPySyyJ
24 4 adantr FCCovMapJUJPUyJPySyUJ
25 inopn JTopyJUJyUJ
26 22 23 24 25 syl3anc FCCovMapJUJPUyJPySyyUJ
27 inss1 yUy
28 27 a1i FCCovMapJUJPUyJPySyyUy
29 1 cvmsss2 FCCovMapJyUJyUySySyU
30 20 26 28 29 syl3anc FCCovMapJUJPUyJPySySySyU
31 19 30 mpd FCCovMapJUJPUyJPySySyU
32 eleq2 x=yUPxPyU
33 fveq2 x=yUSx=SyU
34 33 neeq1d x=yUSxSyU
35 32 34 anbi12d x=yUPxSxPyUSyU
36 35 rspcev yU𝒫UPyUSyUx𝒫UPxSx
37 15 18 31 36 syl12anc FCCovMapJUJPUyJPySyx𝒫UPxSx
38 9 37 rexlimddv FCCovMapJUJPUx𝒫UPxSx