Description: Lemma for cycpmconjv . (Contributed by Thierry Arnoux, 9-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycpmconjvlem.f | |
|
cycpmconjvlem.b | |
||
Assertion | cycpmconjvlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpmconjvlem.f | |
|
2 | cycpmconjvlem.b | |
|
3 | f1ofun | |
|
4 | 1 3 | syl | |
5 | funrel | |
|
6 | dfrel2 | |
|
7 | 5 6 | sylib | |
8 | 7 | reseq1d | |
9 | 8 | cnveqd | |
10 | 9 | coeq2d | |
11 | 4 10 | syl | |
12 | difssd | |
|
13 | f1odm | |
|
14 | 1 13 | syl | |
15 | 12 14 | sseqtrrd | |
16 | ssdmres | |
|
17 | 15 16 | sylib | |
18 | ssidd | |
|
19 | 17 18 | eqsstrd | |
20 | cores2 | |
|
21 | 19 20 | syl | |
22 | f1ocnv | |
|
23 | f1ofun | |
|
24 | 1 22 23 | 3syl | |
25 | ssidd | |
|
26 | 25 14 | sseqtrrd | |
27 | fores | |
|
28 | 4 26 27 | syl2anc | |
29 | df-ima | |
|
30 | foeq3 | |
|
31 | 29 30 | ax-mp | |
32 | 28 31 | sylib | |
33 | 2 14 | sseqtrrd | |
34 | fores | |
|
35 | 4 33 34 | syl2anc | |
36 | df-ima | |
|
37 | foeq3 | |
|
38 | 36 37 | ax-mp | |
39 | 35 38 | sylib | |
40 | resdif | |
|
41 | 24 32 39 40 | syl3anc | |
42 | f1ofn | |
|
43 | fnresdm | |
|
44 | 1 42 43 | 3syl | |
45 | 44 | rneqd | |
46 | f1ofo | |
|
47 | forn | |
|
48 | 1 46 47 | 3syl | |
49 | 45 48 | eqtrd | |
50 | 49 | difeq1d | |
51 | 50 | f1oeq3d | |
52 | 41 51 | mpbid | |
53 | f1ococnv2 | |
|
54 | 52 53 | syl | |
55 | 11 21 54 | 3eqtr3d | |