Metamath Proof Explorer


Theorem cycpmconjvlem

Description: Lemma for cycpmconjv . (Contributed by Thierry Arnoux, 9-Oct-2023)

Ref Expression
Hypotheses cycpmconjvlem.f φF:D1-1 ontoD
cycpmconjvlem.b φBD
Assertion cycpmconjvlem φFDBF-1=IDranFB

Proof

Step Hyp Ref Expression
1 cycpmconjvlem.f φF:D1-1 ontoD
2 cycpmconjvlem.b φBD
3 f1ofun F:D1-1 ontoDFunF
4 1 3 syl φFunF
5 funrel FunFRelF
6 dfrel2 RelFF-1-1=F
7 5 6 sylib FunFF-1-1=F
8 7 reseq1d FunFF-1-1DB=FDB
9 8 cnveqd FunFF-1-1DB-1=FDB-1
10 9 coeq2d FunFFDBF-1-1DB-1=FDBFDB-1
11 4 10 syl φFDBF-1-1DB-1=FDBFDB-1
12 difssd φDBD
13 f1odm F:D1-1 ontoDdomF=D
14 1 13 syl φdomF=D
15 12 14 sseqtrrd φDBdomF
16 ssdmres DBdomFdomFDB=DB
17 15 16 sylib φdomFDB=DB
18 ssidd φDBDB
19 17 18 eqsstrd φdomFDBDB
20 cores2 domFDBDBFDBF-1-1DB-1=FDBF-1
21 19 20 syl φFDBF-1-1DB-1=FDBF-1
22 f1ocnv F:D1-1 ontoDF-1:D1-1 ontoD
23 f1ofun F-1:D1-1 ontoDFunF-1
24 1 22 23 3syl φFunF-1
25 ssidd φDD
26 25 14 sseqtrrd φDdomF
27 fores FunFDdomFFD:DontoFD
28 4 26 27 syl2anc φFD:DontoFD
29 df-ima FD=ranFD
30 foeq3 FD=ranFDFD:DontoFDFD:DontoranFD
31 29 30 ax-mp FD:DontoFDFD:DontoranFD
32 28 31 sylib φFD:DontoranFD
33 2 14 sseqtrrd φBdomF
34 fores FunFBdomFFB:BontoFB
35 4 33 34 syl2anc φFB:BontoFB
36 df-ima FB=ranFB
37 foeq3 FB=ranFBFB:BontoFBFB:BontoranFB
38 36 37 ax-mp FB:BontoFBFB:BontoranFB
39 35 38 sylib φFB:BontoranFB
40 resdif FunF-1FD:DontoranFDFB:BontoranFBFDB:DB1-1 ontoranFDranFB
41 24 32 39 40 syl3anc φFDB:DB1-1 ontoranFDranFB
42 f1ofn F:D1-1 ontoDFFnD
43 fnresdm FFnDFD=F
44 1 42 43 3syl φFD=F
45 44 rneqd φranFD=ranF
46 f1ofo F:D1-1 ontoDF:DontoD
47 forn F:DontoDranF=D
48 1 46 47 3syl φranF=D
49 45 48 eqtrd φranFD=D
50 49 difeq1d φranFDranFB=DranFB
51 50 f1oeq3d φFDB:DB1-1 ontoranFDranFBFDB:DB1-1 ontoDranFB
52 41 51 mpbid φFDB:DB1-1 ontoDranFB
53 f1ococnv2 FDB:DB1-1 ontoDranFBFDBFDB-1=IDranFB
54 52 53 syl φFDBFDB-1=IDranFB
55 11 21 54 3eqtr3d φFDBF-1=IDranFB