Metamath Proof Explorer


Theorem cycpmconjvlem

Description: Lemma for cycpmconjv . (Contributed by Thierry Arnoux, 9-Oct-2023)

Ref Expression
Hypotheses cycpmconjvlem.f φ F : D 1-1 onto D
cycpmconjvlem.b φ B D
Assertion cycpmconjvlem φ F D B F -1 = I D ran F B

Proof

Step Hyp Ref Expression
1 cycpmconjvlem.f φ F : D 1-1 onto D
2 cycpmconjvlem.b φ B D
3 f1ofun F : D 1-1 onto D Fun F
4 1 3 syl φ Fun F
5 funrel Fun F Rel F
6 dfrel2 Rel F F -1 -1 = F
7 5 6 sylib Fun F F -1 -1 = F
8 7 reseq1d Fun F F -1 -1 D B = F D B
9 8 cnveqd Fun F F -1 -1 D B -1 = F D B -1
10 9 coeq2d Fun F F D B F -1 -1 D B -1 = F D B F D B -1
11 4 10 syl φ F D B F -1 -1 D B -1 = F D B F D B -1
12 difssd φ D B D
13 f1odm F : D 1-1 onto D dom F = D
14 1 13 syl φ dom F = D
15 12 14 sseqtrrd φ D B dom F
16 ssdmres D B dom F dom F D B = D B
17 15 16 sylib φ dom F D B = D B
18 ssidd φ D B D B
19 17 18 eqsstrd φ dom F D B D B
20 cores2 dom F D B D B F D B F -1 -1 D B -1 = F D B F -1
21 19 20 syl φ F D B F -1 -1 D B -1 = F D B F -1
22 f1ocnv F : D 1-1 onto D F -1 : D 1-1 onto D
23 f1ofun F -1 : D 1-1 onto D Fun F -1
24 1 22 23 3syl φ Fun F -1
25 ssidd φ D D
26 25 14 sseqtrrd φ D dom F
27 fores Fun F D dom F F D : D onto F D
28 4 26 27 syl2anc φ F D : D onto F D
29 df-ima F D = ran F D
30 foeq3 F D = ran F D F D : D onto F D F D : D onto ran F D
31 29 30 ax-mp F D : D onto F D F D : D onto ran F D
32 28 31 sylib φ F D : D onto ran F D
33 2 14 sseqtrrd φ B dom F
34 fores Fun F B dom F F B : B onto F B
35 4 33 34 syl2anc φ F B : B onto F B
36 df-ima F B = ran F B
37 foeq3 F B = ran F B F B : B onto F B F B : B onto ran F B
38 36 37 ax-mp F B : B onto F B F B : B onto ran F B
39 35 38 sylib φ F B : B onto ran F B
40 resdif Fun F -1 F D : D onto ran F D F B : B onto ran F B F D B : D B 1-1 onto ran F D ran F B
41 24 32 39 40 syl3anc φ F D B : D B 1-1 onto ran F D ran F B
42 f1ofn F : D 1-1 onto D F Fn D
43 fnresdm F Fn D F D = F
44 1 42 43 3syl φ F D = F
45 44 rneqd φ ran F D = ran F
46 f1ofo F : D 1-1 onto D F : D onto D
47 forn F : D onto D ran F = D
48 1 46 47 3syl φ ran F = D
49 45 48 eqtrd φ ran F D = D
50 49 difeq1d φ ran F D ran F B = D ran F B
51 50 f1oeq3d φ F D B : D B 1-1 onto ran F D ran F B F D B : D B 1-1 onto D ran F B
52 41 51 mpbid φ F D B : D B 1-1 onto D ran F B
53 f1ococnv2 F D B : D B 1-1 onto D ran F B F D B F D B -1 = I D ran F B
54 52 53 syl φ F D B F D B -1 = I D ran F B
55 11 21 54 3eqtr3d φ F D B F -1 = I D ran F B