| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycsubm.b |
|
| 2 |
|
cycsubm.t |
|
| 3 |
|
cycsubm.f |
|
| 4 |
|
cycsubm.c |
|
| 5 |
1 2
|
mulgnn0cl |
|
| 6 |
5
|
3expa |
|
| 7 |
6
|
an32s |
|
| 8 |
7 3
|
fmptd |
|
| 9 |
8
|
frnd |
|
| 10 |
4 9
|
eqsstrid |
|
| 11 |
|
0nn0 |
|
| 12 |
11
|
a1i |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
eqeq2d |
|
| 15 |
14
|
adantl |
|
| 16 |
|
eqid |
|
| 17 |
1 16 2
|
mulg0 |
|
| 18 |
17
|
adantl |
|
| 19 |
18
|
eqcomd |
|
| 20 |
12 15 19
|
rspcedvd |
|
| 21 |
1 2 3 4
|
cycsubmel |
|
| 22 |
20 21
|
sylibr |
|
| 23 |
|
simplr |
|
| 24 |
|
simpr |
|
| 25 |
23 24
|
nn0addcld |
|
| 26 |
25
|
adantr |
|
| 27 |
|
oveq1 |
|
| 28 |
27
|
eqeq2d |
|
| 29 |
28
|
adantl |
|
| 30 |
|
oveq12 |
|
| 31 |
30
|
ancoms |
|
| 32 |
|
simplll |
|
| 33 |
|
simpllr |
|
| 34 |
|
eqid |
|
| 35 |
1 2 34
|
mulgnn0dir |
|
| 36 |
32 23 24 33 35
|
syl13anc |
|
| 37 |
36
|
eqcomd |
|
| 38 |
31 37
|
sylan9eqr |
|
| 39 |
26 29 38
|
rspcedvd |
|
| 40 |
39
|
exp32 |
|
| 41 |
40
|
rexlimdva |
|
| 42 |
41
|
com23 |
|
| 43 |
42
|
rexlimdva |
|
| 44 |
43
|
impd |
|
| 45 |
1 2 3 4
|
cycsubmel |
|
| 46 |
1 2 3 4
|
cycsubmel |
|
| 47 |
45 46
|
anbi12i |
|
| 48 |
1 2 3 4
|
cycsubmel |
|
| 49 |
44 47 48
|
3imtr4g |
|
| 50 |
49
|
ralrimivv |
|
| 51 |
1 16 34
|
issubm |
|
| 52 |
51
|
adantr |
|
| 53 |
10 22 50 52
|
mpbir3and |
|