Metamath Proof Explorer


Theorem dalemcea

Description: Lemma for dath . Frequently-used utility lemma. Here we show that C must be an atom. This is an assumption in most presentations of Desargues's theorem; instead, we assume only the C is a lattice element, in order to make later substitutions for C easier. (Contributed by NM, 23-Sep-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem1.o O=LPlanesK
dalem1.y Y=P˙Q˙R
Assertion dalemcea φCA

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem1.o O=LPlanesK
6 dalem1.y Y=P˙Q˙R
7 1 dalemkeop φKOP
8 1 4 dalemceb φCBaseK
9 1 dalemkehl φKHL
10 1 2 3 4 5 6 dalempjsen φP˙SLLinesK
11 1 dalemqea φQA
12 1 dalemtea φTA
13 1 2 3 4 5 6 dalemqnet φQT
14 eqid LLinesK=LLinesK
15 3 4 14 llni2 KHLQATAQTQ˙TLLinesK
16 9 11 12 13 15 syl31anc φQ˙TLLinesK
17 1 2 3 4 5 6 dalem1 φP˙SQ˙T
18 1 dalem-clpjq φ¬C˙P˙Q
19 1 3 4 dalempjqeb φP˙QBaseK
20 eqid BaseK=BaseK
21 eqid 0.K=0.K
22 20 2 21 op0le KOPP˙QBaseK0.K˙P˙Q
23 7 19 22 syl2anc φ0.K˙P˙Q
24 breq1 C=0.KC˙P˙Q0.K˙P˙Q
25 23 24 syl5ibrcom φC=0.KC˙P˙Q
26 25 necon3bd φ¬C˙P˙QC0.K
27 18 26 mpd φC0.K
28 eqid <K=<K
29 20 28 21 opltn0 KOPCBaseK0.K<KCC0.K
30 7 8 29 syl2anc φ0.K<KCC0.K
31 27 30 mpbird φ0.K<KC
32 1 dalemclpjs φC˙P˙S
33 1 dalemclqjt φC˙Q˙T
34 1 dalemkelat φKLat
35 1 dalempea φPA
36 1 dalemsea φSA
37 20 3 4 hlatjcl KHLPASAP˙SBaseK
38 9 35 36 37 syl3anc φP˙SBaseK
39 20 3 4 hlatjcl KHLQATAQ˙TBaseK
40 9 11 12 39 syl3anc φQ˙TBaseK
41 eqid meetK=meetK
42 20 2 41 latlem12 KLatCBaseKP˙SBaseKQ˙TBaseKC˙P˙SC˙Q˙TC˙P˙SmeetKQ˙T
43 34 8 38 40 42 syl13anc φC˙P˙SC˙Q˙TC˙P˙SmeetKQ˙T
44 32 33 43 mpbi2and φC˙P˙SmeetKQ˙T
45 opposet KOPKPoset
46 7 45 syl φKPoset
47 20 21 op0cl KOP0.KBaseK
48 7 47 syl φ0.KBaseK
49 20 41 latmcl KLatP˙SBaseKQ˙TBaseKP˙SmeetKQ˙TBaseK
50 34 38 40 49 syl3anc φP˙SmeetKQ˙TBaseK
51 20 2 28 pltletr KPoset0.KBaseKCBaseKP˙SmeetKQ˙TBaseK0.K<KCC˙P˙SmeetKQ˙T0.K<KP˙SmeetKQ˙T
52 46 48 8 50 51 syl13anc φ0.K<KCC˙P˙SmeetKQ˙T0.K<KP˙SmeetKQ˙T
53 31 44 52 mp2and φ0.K<KP˙SmeetKQ˙T
54 20 28 21 opltn0 KOPP˙SmeetKQ˙TBaseK0.K<KP˙SmeetKQ˙TP˙SmeetKQ˙T0.K
55 7 50 54 syl2anc φ0.K<KP˙SmeetKQ˙TP˙SmeetKQ˙T0.K
56 53 55 mpbid φP˙SmeetKQ˙T0.K
57 41 21 4 14 2llnmat KHLP˙SLLinesKQ˙TLLinesKP˙SQ˙TP˙SmeetKQ˙T0.KP˙SmeetKQ˙TA
58 9 10 16 17 56 57 syl32anc φP˙SmeetKQ˙TA
59 20 2 21 4 leat2 KOPCBaseKP˙SmeetKQ˙TAC0.KC˙P˙SmeetKQ˙TC=P˙SmeetKQ˙T
60 7 8 58 27 44 59 syl32anc φC=P˙SmeetKQ˙T
61 60 58 eqeltrd φCA