Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dchrabl.g | |
|
Assertion | dchrabl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrabl.g | |
|
2 | eqidd | |
|
3 | eqidd | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | simp2 | |
|
8 | simp3 | |
|
9 | 1 4 5 6 7 8 | dchrmulcl | |
10 | fvexd | |
|
11 | eqid | |
|
12 | 1 4 5 11 7 | dchrf | |
13 | 12 | 3adant3r3 | |
14 | 1 4 5 11 8 | dchrf | |
15 | 14 | 3adant3r3 | |
16 | simpr3 | |
|
17 | 1 4 5 11 16 | dchrf | |
18 | mulass | |
|
19 | 18 | adantl | |
20 | 10 13 15 17 19 | caofass | |
21 | simpr1 | |
|
22 | simpr2 | |
|
23 | 1 4 5 6 21 22 | dchrmul | |
24 | 23 | oveq1d | |
25 | 1 4 5 6 22 16 | dchrmul | |
26 | 25 | oveq2d | |
27 | 20 24 26 | 3eqtr4d | |
28 | 9 | 3adant3r3 | |
29 | 1 4 5 6 28 16 | dchrmul | |
30 | 1 4 5 6 22 16 | dchrmulcl | |
31 | 1 4 5 6 21 30 | dchrmul | |
32 | 27 29 31 | 3eqtr4d | |
33 | eqid | |
|
34 | eqid | |
|
35 | id | |
|
36 | 1 4 5 11 33 34 35 | dchr1cl | |
37 | simpr | |
|
38 | 1 4 5 11 33 34 6 37 | dchrmullid | |
39 | eqid | |
|
40 | 1 4 5 11 33 34 6 37 39 | dchrinvcl | |
41 | 40 | simpld | |
42 | 40 | simprd | |
43 | 2 3 9 32 36 38 41 42 | isgrpd | |
44 | fvexd | |
|
45 | mulcom | |
|
46 | 45 | adantl | |
47 | 44 12 14 46 | caofcom | |
48 | 1 4 5 6 7 8 | dchrmul | |
49 | 1 4 5 6 8 7 | dchrmul | |
50 | 47 48 49 | 3eqtr4d | |
51 | 2 3 43 50 | isabld | |