Metamath Proof Explorer


Theorem dfatdmfcoafv2

Description: Domain of a function composition, analogous to dmfco . (Contributed by AV, 7-Sep-2022)

Ref Expression
Assertion dfatdmfcoafv2 GdefAtAAdomFGG''''AdomF

Proof

Step Hyp Ref Expression
1 dfatafv2ex GdefAtAG''''AV
2 opeq1 x=G''''Axy=G''''Ay
3 2 eleq1d x=G''''AxyFG''''AyF
4 3 ceqsexgv G''''AVxx=G''''AxyFG''''AyF
5 4 bicomd G''''AVG''''AyFxx=G''''AxyF
6 1 5 syl GdefAtAG''''AyFxx=G''''AxyF
7 eqcom x=G''''AG''''A=x
8 dfatopafv2b GdefAtAxVG''''A=xAxG
9 8 elvd GdefAtAG''''A=xAxG
10 7 9 bitrid GdefAtAx=G''''AAxG
11 10 anbi1d GdefAtAx=G''''AxyFAxGxyF
12 11 exbidv GdefAtAxx=G''''AxyFxAxGxyF
13 6 12 bitrd GdefAtAG''''AyFxAxGxyF
14 13 exbidv GdefAtAyG''''AyFyxAxGxyF
15 eldm2g G''''AVG''''AdomFyG''''AyF
16 1 15 syl GdefAtAG''''AdomFyG''''AyF
17 df-dfat GdefAtAAdomGFunGA
18 eldm2g AdomGAdomFGyAyFG
19 opelco2g AdomGyVAyFGxAxGxyF
20 19 elvd AdomGAyFGxAxGxyF
21 20 exbidv AdomGyAyFGyxAxGxyF
22 18 21 bitrd AdomGAdomFGyxAxGxyF
23 22 adantr AdomGFunGAAdomFGyxAxGxyF
24 17 23 sylbi GdefAtAAdomFGyxAxGxyF
25 14 16 24 3bitr4rd GdefAtAAdomFGG''''AdomF