Description: A definition of iota using minimal quantifiers. (Contributed by Scott Fenton, 19-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | dfiota3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iota | |
|
2 | eqabcb | |
|
3 | exdistr | |
|
4 | vex | |
|
5 | sneq | |
|
6 | 5 | eqeq2d | |
7 | 4 6 | ceqsexv | |
8 | vsnex | |
|
9 | eqeq1 | |
|
10 | eleq2 | |
|
11 | 9 10 | anbi12d | |
12 | eqcom | |
|
13 | velsn | |
|
14 | equcom | |
|
15 | 13 14 | bitri | |
16 | 12 15 | anbi12ci | |
17 | 11 16 | bitrdi | |
18 | 8 17 | ceqsexv | |
19 | an13 | |
|
20 | 19 | exbii | |
21 | 18 20 | bitr3i | |
22 | 21 | exbii | |
23 | 7 22 | bitr3i | |
24 | excom | |
|
25 | 23 24 | bitri | |
26 | eluniab | |
|
27 | 3 25 26 | 3bitr4i | |
28 | 2 27 | mpgbir | |
29 | df-sn | |
|
30 | dfsingles2 | |
|
31 | 29 30 | ineq12i | |
32 | inab | |
|
33 | 19.42v | |
|
34 | 33 | bicomi | |
35 | 34 | abbii | |
36 | 32 35 | eqtri | |
37 | 31 36 | eqtri | |
38 | 37 | unieqi | |
39 | 28 38 | eqtr4i | |
40 | 39 | unieqi | |
41 | 1 40 | eqtri | |