Description: Lemma for dfon2 . A class of new ordinals is well-founded by _E . (Contributed by Scott Fenton, 3-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dfon2lem9 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv | |
|
2 | dfon2lem8 | |
|
3 | 2 | simprd | |
4 | intss1 | |
|
5 | 2 | simpld | |
6 | intex | |
|
7 | dfon2lem3 | |
|
8 | 7 | imp | |
9 | 8 | simprd | |
10 | untelirr | |
|
11 | 9 10 | syl | |
12 | eleq1 | |
|
13 | 12 | notbid | |
14 | 11 13 | syl5ibcom | |
15 | 14 | a1dd | |
16 | 8 | simpld | |
17 | trss | |
|
18 | 16 17 | syl | |
19 | eqss | |
|
20 | 19 | simplbi2com | |
21 | 18 20 | syl6 | |
22 | 21 | com23 | |
23 | con3 | |
|
24 | 22 23 | syl6 | |
25 | 24 | com23 | |
26 | 15 25 | pm2.61d | |
27 | 6 26 | sylanb | |
28 | 5 27 | syldan | |
29 | 4 28 | syl5 | |
30 | 29 | ralrimiv | |
31 | eleq2 | |
|
32 | 31 | notbid | |
33 | 32 | ralbidv | |
34 | 33 | rspcev | |
35 | 3 30 34 | syl2anc | |
36 | 35 | expcom | |
37 | 1 36 | syl6com | |
38 | 37 | impd | |
39 | 38 | alrimiv | |
40 | df-fr | |
|
41 | epel | |
|
42 | 41 | notbii | |
43 | 42 | ralbii | |
44 | 43 | rexbii | |
45 | 44 | imbi2i | |
46 | 45 | albii | |
47 | 40 46 | bitri | |
48 | 39 47 | sylibr | |