Metamath Proof Explorer


Theorem dfrngc2

Description: Alternate definition of the category of non-unital rings (in a universe). (Contributed by AV, 16-Mar-2020)

Ref Expression
Hypotheses dfrngc2.c C=RngCatU
dfrngc2.u φUV
dfrngc2.b φB=URng
dfrngc2.h φH=RngHomoB×B
dfrngc2.o φ·˙=compExtStrCatU
Assertion dfrngc2 φC=BasendxBHomndxHcompndx·˙

Proof

Step Hyp Ref Expression
1 dfrngc2.c C=RngCatU
2 dfrngc2.u φUV
3 dfrngc2.b φB=URng
4 dfrngc2.h φH=RngHomoB×B
5 dfrngc2.o φ·˙=compExtStrCatU
6 1 2 3 4 rngcval φC=ExtStrCatUcatH
7 eqid ExtStrCatUcatH=ExtStrCatUcatH
8 fvexd φExtStrCatUV
9 inex1g UVURngV
10 2 9 syl φURngV
11 3 10 eqeltrd φBV
12 3 4 rnghmresfn φHFnB×B
13 7 8 11 12 rescval2 φExtStrCatUcatH=ExtStrCatU𝑠BsSetHomndxH
14 eqid ExtStrCatU=ExtStrCatU
15 eqidd φxU,yUBaseyBasex=xU,yUBaseyBasex
16 eqid compExtStrCatU=compExtStrCatU
17 14 2 16 estrccofval φcompExtStrCatU=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
18 5 17 eqtrd φ·˙=vU×U,zUgBasezBase2ndv,fBase2ndvBase1stvgf
19 14 2 15 18 estrcval φExtStrCatU=BasendxUHomndxxU,yUBaseyBasexcompndx·˙
20 mpoexga UVUVxU,yUBaseyBasexV
21 2 2 20 syl2anc φxU,yUBaseyBasexV
22 fvexd φcompExtStrCatUV
23 5 22 eqeltrd φ·˙V
24 rnghmfn RngHomoFnRng×Rng
25 fnfun RngHomoFnRng×RngFunRngHomo
26 24 25 mp1i φFunRngHomo
27 sqxpexg BVB×BV
28 11 27 syl φB×BV
29 resfunexg FunRngHomoB×BVRngHomoB×BV
30 26 28 29 syl2anc φRngHomoB×BV
31 4 30 eqeltrd φHV
32 inss1 URngU
33 3 32 eqsstrdi φBU
34 19 2 21 23 31 33 estrres φExtStrCatU𝑠BsSetHomndxH=BasendxBHomndxHcompndx·˙
35 6 13 34 3eqtrd φC=BasendxBHomndxHcompndx·˙