Metamath Proof Explorer


Theorem rnghmsscmap2

Description: The non-unital ring homomorphisms between non-unital rings (in a universe) are a subcategory subset of the mappings between base sets of non-unital rings (in the same universe). (Contributed by AV, 6-Mar-2020)

Ref Expression
Hypotheses rnghmsscmap.u φUV
rnghmsscmap.r φR=RngU
Assertion rnghmsscmap2 φRngHomoR×RcatxR,yRBaseyBasex

Proof

Step Hyp Ref Expression
1 rnghmsscmap.u φUV
2 rnghmsscmap.r φR=RngU
3 ssidd φRR
4 eqid Basea=Basea
5 eqid Baseb=Baseb
6 4 5 rnghmf haRngHomobh:BaseaBaseb
7 simpr φaRbRh:BaseaBasebh:BaseaBaseb
8 fvex BasebV
9 fvex BaseaV
10 8 9 pm3.2i BasebVBaseaV
11 elmapg BasebVBaseaVhBasebBaseah:BaseaBaseb
12 10 11 mp1i φaRbRh:BaseaBasebhBasebBaseah:BaseaBaseb
13 7 12 mpbird φaRbRh:BaseaBasebhBasebBasea
14 13 ex φaRbRh:BaseaBasebhBasebBasea
15 6 14 syl5 φaRbRhaRngHomobhBasebBasea
16 15 ssrdv φaRbRaRngHomobBasebBasea
17 ovres aRbRaRngHomoR×Rb=aRngHomob
18 17 adantl φaRbRaRngHomoR×Rb=aRngHomob
19 eqidd aRbRxR,yRBaseyBasex=xR,yRBaseyBasex
20 fveq2 y=bBasey=Baseb
21 fveq2 x=aBasex=Basea
22 20 21 oveqan12rd x=ay=bBaseyBasex=BasebBasea
23 22 adantl aRbRx=ay=bBaseyBasex=BasebBasea
24 simpl aRbRaR
25 simpr aRbRbR
26 ovexd aRbRBasebBaseaV
27 19 23 24 25 26 ovmpod aRbRaxR,yRBaseyBasexb=BasebBasea
28 27 adantl φaRbRaxR,yRBaseyBasexb=BasebBasea
29 16 18 28 3sstr4d φaRbRaRngHomoR×RbaxR,yRBaseyBasexb
30 29 ralrimivva φaRbRaRngHomoR×RbaxR,yRBaseyBasexb
31 rnghmfn RngHomoFnRng×Rng
32 31 a1i φRngHomoFnRng×Rng
33 inss1 RngURng
34 2 33 eqsstrdi φRRng
35 xpss12 RRngRRngR×RRng×Rng
36 34 34 35 syl2anc φR×RRng×Rng
37 fnssres RngHomoFnRng×RngR×RRng×RngRngHomoR×RFnR×R
38 32 36 37 syl2anc φRngHomoR×RFnR×R
39 eqid xR,yRBaseyBasex=xR,yRBaseyBasex
40 ovex BaseyBasexV
41 39 40 fnmpoi xR,yRBaseyBasexFnR×R
42 41 a1i φxR,yRBaseyBasexFnR×R
43 incom RngU=URng
44 inex1g UVURngV
45 1 44 syl φURngV
46 43 45 eqeltrid φRngUV
47 2 46 eqeltrd φRV
48 38 42 47 isssc φRngHomoR×RcatxR,yRBaseyBasexRRaRbRaRngHomoR×RbaxR,yRBaseyBasexb
49 3 30 48 mpbir2and φRngHomoR×RcatxR,yRBaseyBasex