Metamath Proof Explorer


Theorem dftrcl3

Description: Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion dftrcl3 t+ = r V n r r n

Proof

Step Hyp Ref Expression
1 df-trcl t+ = r V z | r z z z z
2 relexp1g r V r r 1 = r
3 nnex V
4 1nn 1
5 oveq1 a = t a r n = t r n
6 5 iuneq2d a = t n a r n = n t r n
7 oveq2 n = k t r n = t r k
8 7 cbviunv n t r n = k t r k
9 6 8 eqtrdi a = t n a r n = k t r k
10 9 cbvmptv a V n a r n = t V k t r k
11 10 ov2ssiunov2 r V V 1 r r 1 a V n a r n r
12 3 4 11 mp3an23 r V r r 1 a V n a r n r
13 2 12 eqsstrrd r V r a V n a r n r
14 nnuz = 1
15 1nn0 1 0
16 10 iunrelexpuztr r V = 1 1 0 a V n a r n r a V n a r n r a V n a r n r
17 14 15 16 mp3an23 r V a V n a r n r a V n a r n r a V n a r n r
18 fvex a V n a r n r V
19 trcleq2lem z = a V n a r n r r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r
20 19 a1i r V z = a V n a r n r r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r
21 20 alrimiv r V z z = a V n a r n r r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r
22 elabgt a V n a r n r V z z = a V n a r n r r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r a V n a r n r z | r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r
23 18 21 22 sylancr r V a V n a r n r z | r z z z z r a V n a r n r a V n a r n r a V n a r n r a V n a r n r
24 13 17 23 mpbir2and r V a V n a r n r z | r z z z z
25 intss1 a V n a r n r z | r z z z z z | r z z z z a V n a r n r
26 24 25 syl r V z | r z z z z a V n a r n r
27 vex s V
28 trcleq2lem z = s r z z z z r s s s s
29 27 28 elab s z | r z z z z r s s s s
30 eqid =
31 10 iunrelexpmin1 r V = s r s s s s a V n a r n r s
32 30 31 mpan2 r V s r s s s s a V n a r n r s
33 32 19.21bi r V r s s s s a V n a r n r s
34 29 33 syl5bi r V s z | r z z z z a V n a r n r s
35 34 ralrimiv r V s z | r z z z z a V n a r n r s
36 ssint a V n a r n r z | r z z z z s z | r z z z z a V n a r n r s
37 35 36 sylibr r V a V n a r n r z | r z z z z
38 26 37 eqssd r V z | r z z z z = a V n a r n r
39 oveq1 a = r a r n = r r n
40 39 iuneq2d a = r n a r n = n r r n
41 eqid a V n a r n = a V n a r n
42 ovex r r n V
43 3 42 iunex n r r n V
44 40 41 43 fvmpt r V a V n a r n r = n r r n
45 38 44 eqtrd r V z | r z z z z = n r r n
46 45 mpteq2ia r V z | r z z z z = r V n r r n
47 1 46 eqtri t+ = r V n r r n