Metamath Proof Explorer


Theorem dfxlim2

Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses dfxlim2.k _ k F
dfxlim2.m φ M
dfxlim2.z Z = M
dfxlim2.f φ F : Z *
Assertion dfxlim2 φ F * A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k

Proof

Step Hyp Ref Expression
1 dfxlim2.k _ k F
2 dfxlim2.m φ M
3 dfxlim2.z Z = M
4 dfxlim2.f φ F : Z *
5 2 3 4 dfxlim2v φ F * A F A A = −∞ y i Z l i F l y A = +∞ y i Z l i y F l
6 biid F A F A
7 breq2 y = x F l y F l x
8 7 rexralbidv y = x i Z l i F l y i Z l i F l x
9 fveq2 i = j i = j
10 9 raleqdv i = j l i F l x l j F l x
11 nfcv _ k l
12 1 11 nffv _ k F l
13 nfcv _ k
14 nfcv _ k x
15 12 13 14 nfbr k F l x
16 nfv l F k x
17 fveq2 l = k F l = F k
18 17 breq1d l = k F l x F k x
19 15 16 18 cbvralw l j F l x k j F k x
20 10 19 bitrdi i = j l i F l x k j F k x
21 20 cbvrexvw i Z l i F l x j Z k j F k x
22 8 21 bitrdi y = x i Z l i F l y j Z k j F k x
23 22 cbvralvw y i Z l i F l y x j Z k j F k x
24 23 anbi2i A = −∞ y i Z l i F l y A = −∞ x j Z k j F k x
25 breq1 y = x y F l x F l
26 25 rexralbidv y = x i Z l i y F l i Z l i x F l
27 9 raleqdv i = j l i x F l l j x F l
28 14 13 12 nfbr k x F l
29 nfv l x F k
30 17 breq2d l = k x F l x F k
31 28 29 30 cbvralw l j x F l k j x F k
32 27 31 bitrdi i = j l i x F l k j x F k
33 32 cbvrexvw i Z l i x F l j Z k j x F k
34 26 33 bitrdi y = x i Z l i y F l j Z k j x F k
35 34 cbvralvw y i Z l i y F l x j Z k j x F k
36 35 anbi2i A = +∞ y i Z l i y F l A = +∞ x j Z k j x F k
37 6 24 36 3orbi123i F A A = −∞ y i Z l i F l y A = +∞ y i Z l i y F l F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k
38 5 37 bitrdi φ F * A F A A = −∞ x j Z k j F k x A = +∞ x j Z k j x F k