Metamath Proof Explorer


Theorem dib0

Description: The value of partial isomorphism B at the lattice zero is the singleton of the zero vector i.e. the zero subspace. (Contributed by NM, 27-Mar-2014)

Ref Expression
Hypotheses dib0.z 0˙=0.K
dib0.h H=LHypK
dib0.i I=DIsoBKW
dib0.u U=DVecHKW
dib0.o O=0U
Assertion dib0 KHLWHI0˙=O

Proof

Step Hyp Ref Expression
1 dib0.z 0˙=0.K
2 dib0.h H=LHypK
3 dib0.i I=DIsoBKW
4 dib0.u U=DVecHKW
5 dib0.o O=0U
6 fvex BaseKV
7 resiexg BaseKVIBaseKV
8 6 7 ax-mp IBaseKV
9 fvex LTrnKWV
10 9 mptex fLTrnKWIBaseKV
11 8 10 xpsn IBaseK×fLTrnKWIBaseK=IBaseKfLTrnKWIBaseK
12 id KHLWHKHLWH
13 hlop KHLKOP
14 13 adantr KHLWHKOP
15 eqid BaseK=BaseK
16 15 1 op0cl KOP0˙BaseK
17 14 16 syl KHLWH0˙BaseK
18 15 2 lhpbase WHWBaseK
19 eqid K=K
20 15 19 1 op0le KOPWBaseK0˙KW
21 13 18 20 syl2an KHLWH0˙KW
22 eqid LTrnKW=LTrnKW
23 eqid fLTrnKWIBaseK=fLTrnKWIBaseK
24 eqid DIsoAKW=DIsoAKW
25 15 19 2 22 23 24 3 dibval2 KHLWH0˙BaseK0˙KWI0˙=DIsoAKW0˙×fLTrnKWIBaseK
26 12 17 21 25 syl12anc KHLWHI0˙=DIsoAKW0˙×fLTrnKWIBaseK
27 15 1 2 24 dia0 KHLWHDIsoAKW0˙=IBaseK
28 27 xpeq1d KHLWHDIsoAKW0˙×fLTrnKWIBaseK=IBaseK×fLTrnKWIBaseK
29 26 28 eqtrd KHLWHI0˙=IBaseK×fLTrnKWIBaseK
30 15 2 22 4 5 23 dvh0g KHLWHO=IBaseKfLTrnKWIBaseK
31 30 sneqd KHLWHO=IBaseKfLTrnKWIBaseK
32 11 29 31 3eqtr4a KHLWHI0˙=O