Metamath Proof Explorer


Theorem difsnen

Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015)

Ref Expression
Assertion difsnen X V A X B X X A X B

Proof

Step Hyp Ref Expression
1 difexg X V X A V
2 enrefg X A V X A X A
3 1 2 syl X V X A X A
4 3 3ad2ant1 X V A X B X X A X A
5 sneq A = B A = B
6 5 difeq2d A = B X A = X B
7 6 breq2d A = B X A X A X A X B
8 4 7 syl5ibcom X V A X B X A = B X A X B
9 8 imp X V A X B X A = B X A X B
10 simpl1 X V A X B X A B X V
11 difexg X A V X A B V
12 enrefg X A B V X A B X A B
13 10 1 11 12 4syl X V A X B X A B X A B X A B
14 dif32 X A B = X B A
15 13 14 breqtrdi X V A X B X A B X A B X B A
16 simpl3 X V A X B X A B B X
17 simpl2 X V A X B X A B A X
18 en2sn B X A X B A
19 16 17 18 syl2anc X V A X B X A B B A
20 incom X A B B = B X A B
21 disjdif B X A B =
22 20 21 eqtri X A B B =
23 22 a1i X V A X B X A B X A B B =
24 incom X B A A = A X B A
25 disjdif A X B A =
26 24 25 eqtri X B A A =
27 26 a1i X V A X B X A B X B A A =
28 unen X A B X B A B A X A B B = X B A A = X A B B X B A A
29 15 19 23 27 28 syl22anc X V A X B X A B X A B B X B A A
30 simpr X V A X B X A B A B
31 30 necomd X V A X B X A B B A
32 eldifsn B X A B X B A
33 16 31 32 sylanbrc X V A X B X A B B X A
34 difsnid B X A X A B B = X A
35 33 34 syl X V A X B X A B X A B B = X A
36 eldifsn A X B A X A B
37 17 30 36 sylanbrc X V A X B X A B A X B
38 difsnid A X B X B A A = X B
39 37 38 syl X V A X B X A B X B A A = X B
40 29 35 39 3brtr3d X V A X B X A B X A X B
41 9 40 pm2.61dane X V A X B X X A X B