Metamath Proof Explorer


Theorem dihlatat

Description: The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014)

Ref Expression
Hypotheses dihlatat.a A=AtomsK
dihlatat.h H=LHypK
dihlatat.u U=DVecHKW
dihlatat.i I=DIsoHKW
dihlatat.l L=LSAtomsU
Assertion dihlatat KHLWHQLI-1QA

Proof

Step Hyp Ref Expression
1 dihlatat.a A=AtomsK
2 dihlatat.h H=LHypK
3 dihlatat.u U=DVecHKW
4 dihlatat.i I=DIsoHKW
5 dihlatat.l L=LSAtomsU
6 id KHLWHKHLWH
7 2 3 6 dvhlvec KHLWHULVec
8 eqid BaseU=BaseU
9 eqid LSpanU=LSpanU
10 eqid 0U=0U
11 8 9 10 5 islsat ULVecQLvBaseU0UQ=LSpanUv
12 7 11 syl KHLWHQLvBaseU0UQ=LSpanUv
13 12 biimpa KHLWHQLvBaseU0UQ=LSpanUv
14 eldifsn vBaseU0UvBaseUv0U
15 1 2 3 8 10 9 4 dihlspsnat KHLWHvBaseUv0UI-1LSpanUvA
16 15 3expb KHLWHvBaseUv0UI-1LSpanUvA
17 14 16 sylan2b KHLWHvBaseU0UI-1LSpanUvA
18 fveq2 Q=LSpanUvI-1Q=I-1LSpanUv
19 18 eleq1d Q=LSpanUvI-1QAI-1LSpanUvA
20 17 19 syl5ibrcom KHLWHvBaseU0UQ=LSpanUvI-1QA
21 20 rexlimdva KHLWHvBaseU0UQ=LSpanUvI-1QA
22 21 adantr KHLWHQLvBaseU0UQ=LSpanUvI-1QA
23 13 22 mpd KHLWHQLI-1QA