Metamath Proof Explorer


Theorem dihord2pre2

Description: Part of proof after Lemma N of Crawley p. 122. Reverse ordering property. (Contributed by NM, 4-Mar-2014)

Ref Expression
Hypotheses dihjust.b B=BaseK
dihjust.l ˙=K
dihjust.j ˙=joinK
dihjust.m ˙=meetK
dihjust.a A=AtomsK
dihjust.h H=LHypK
dihjust.i I=DIsoBKW
dihjust.J J=DIsoCKW
dihjust.u U=DVecHKW
dihjust.s ˙=LSSumU
dihord2c.t T=LTrnKW
dihord2c.r R=trLKW
dihord2c.o O=hTIB
dihord2.p P=ocKW
dihord2.e E=TEndoKW
dihord2.d +˙=+U
dihord2.g G=ιhT|hP=N
Assertion dihord2pre2 KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQ˙X˙W˙N˙Y˙W

Proof

Step Hyp Ref Expression
1 dihjust.b B=BaseK
2 dihjust.l ˙=K
3 dihjust.j ˙=joinK
4 dihjust.m ˙=meetK
5 dihjust.a A=AtomsK
6 dihjust.h H=LHypK
7 dihjust.i I=DIsoBKW
8 dihjust.J J=DIsoCKW
9 dihjust.u U=DVecHKW
10 dihjust.s ˙=LSSumU
11 dihord2c.t T=LTrnKW
12 dihord2c.r R=trLKW
13 dihord2c.o O=hTIB
14 dihord2.p P=ocKW
15 dihord2.e E=TEndoKW
16 dihord2.d +˙=+U
17 dihord2.g G=ιhT|hP=N
18 1 2 3 4 5 6 7 8 9 10 dihord2a KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQ˙N˙Y˙W
19 simp11l KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WKHL
20 19 hllatd KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WKLat
21 simp2l KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WXB
22 simp11r KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WWH
23 1 6 lhpbase WHWB
24 22 23 syl KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WWB
25 1 4 latmcl KLatXBWBX˙WB
26 20 21 24 25 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WX˙WB
27 simp2r KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WYB
28 1 4 latmcl KLatYBWBY˙WB
29 20 27 24 28 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WY˙WB
30 simp13l KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WNA
31 1 5 atbase NANB
32 30 31 syl KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WNB
33 1 3 latjcl KLatNBY˙WBN˙Y˙WB
34 20 32 29 33 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WN˙Y˙WB
35 simp33 KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WJQ˙IX˙WJN˙IY˙W
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 dihord2pre KHLWHQA¬Q˙WNA¬N˙WXBYBJQ˙IX˙WJN˙IY˙WX˙W˙Y˙W
37 35 36 syld3an3 KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WX˙W˙Y˙W
38 1 2 3 latlej2 KLatNBY˙WBY˙W˙N˙Y˙W
39 20 32 29 38 syl3anc KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WY˙W˙N˙Y˙W
40 1 2 20 26 29 34 37 39 lattrd KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WX˙W˙N˙Y˙W
41 simp12l KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQA
42 1 5 atbase QAQB
43 41 42 syl KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQB
44 1 2 3 latjle12 KLatQBX˙WBN˙Y˙WBQ˙N˙Y˙WX˙W˙N˙Y˙WQ˙X˙W˙N˙Y˙W
45 20 43 26 34 44 syl13anc KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQ˙N˙Y˙WX˙W˙N˙Y˙WQ˙X˙W˙N˙Y˙W
46 18 40 45 mpbi2and KHLWHQA¬Q˙WNA¬N˙WXBYBQ˙X˙W=XN˙Y˙W=YJQ˙IX˙WJN˙IY˙WQ˙X˙W˙N˙Y˙W