Step |
Hyp |
Ref |
Expression |
1 |
|
dihjust.b |
|
2 |
|
dihjust.l |
|
3 |
|
dihjust.j |
|
4 |
|
dihjust.m |
|
5 |
|
dihjust.a |
|
6 |
|
dihjust.h |
|
7 |
|
dihjust.i |
|
8 |
|
dihjust.J |
|
9 |
|
dihjust.u |
|
10 |
|
dihjust.s |
|
11 |
|
dihord2c.t |
|
12 |
|
dihord2c.r |
|
13 |
|
dihord2c.o |
|
14 |
|
dihord2.p |
|
15 |
|
dihord2.e |
|
16 |
|
dihord2.d |
|
17 |
|
dihord2.g |
|
18 |
|
simpl1 |
|
19 |
|
simpl2l |
|
20 |
|
simpl2r |
|
21 |
|
simpl3 |
|
22 |
|
simprl |
|
23 |
|
simprr |
|
24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
dihord11c |
|
25 |
18 19 20 21 22 23 24
|
syl123anc |
|
26 |
|
simpl11 |
|
27 |
|
simpl13 |
|
28 |
2 5 6 14 11 15 8 17
|
dicelval3 |
|
29 |
26 27 28
|
syl2anc |
|
30 |
|
simp11l |
|
31 |
30
|
adantr |
|
32 |
31
|
hllatd |
|
33 |
|
simp11r |
|
34 |
33
|
adantr |
|
35 |
1 6
|
lhpbase |
|
36 |
34 35
|
syl |
|
37 |
1 4
|
latmcl |
|
38 |
32 20 36 37
|
syl3anc |
|
39 |
1 2 4
|
latmle2 |
|
40 |
32 20 36 39
|
syl3anc |
|
41 |
1 2 6 11 12 13 7
|
dibelval3 |
|
42 |
26 38 40 41
|
syl12anc |
|
43 |
29 42
|
anbi12d |
|
44 |
|
reeanv |
|
45 |
|
simpll1 |
|
46 |
|
simplr |
|
47 |
|
simpr |
|
48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
dihord10 |
|
49 |
45 46 47 48
|
syl3anc |
|
50 |
49
|
3exp2 |
|
51 |
|
oveq12 |
|
52 |
51
|
eqeq2d |
|
53 |
52
|
imbi1d |
|
54 |
53
|
imbi2d |
|
55 |
54
|
biimprd |
|
56 |
55
|
com23 |
|
57 |
56
|
impr |
|
58 |
57
|
com12 |
|
59 |
50 58
|
syl6 |
|
60 |
59
|
rexlimdvv |
|
61 |
44 60
|
syl5bir |
|
62 |
43 61
|
sylbid |
|
63 |
62
|
rexlimdvv |
|
64 |
25 63
|
mpd |
|
65 |
64
|
exp32 |
|
66 |
65
|
ralrimiv |
|
67 |
|
simp11 |
|
68 |
30
|
hllatd |
|
69 |
|
simp2l |
|
70 |
33 35
|
syl |
|
71 |
1 4
|
latmcl |
|
72 |
68 69 70 71
|
syl3anc |
|
73 |
1 2 4
|
latmle2 |
|
74 |
68 69 70 73
|
syl3anc |
|
75 |
|
simp2r |
|
76 |
68 75 70 37
|
syl3anc |
|
77 |
68 75 70 39
|
syl3anc |
|
78 |
1 2 5 6 11 12
|
trlord |
|
79 |
67 72 74 76 77 78
|
syl122anc |
|
80 |
66 79
|
mpbird |
|