| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divalglem8.1 |
|
| 2 |
|
divalglem8.2 |
|
| 3 |
|
divalglem8.3 |
|
| 4 |
|
divalglem8.4 |
|
| 5 |
|
divalglem9.5 |
|
| 6 |
1 2 3 4
|
divalglem2 |
|
| 7 |
5 6
|
eqeltri |
|
| 8 |
1 2 3 4 5
|
divalglem5 |
|
| 9 |
8
|
simpri |
|
| 10 |
|
breq1 |
|
| 11 |
10
|
rspcev |
|
| 12 |
7 9 11
|
mp2an |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
breq2d |
|
| 15 |
14 4
|
elrab2 |
|
| 16 |
15
|
simplbi |
|
| 17 |
16
|
nn0zd |
|
| 18 |
|
oveq2 |
|
| 19 |
18
|
breq2d |
|
| 20 |
19 4
|
elrab2 |
|
| 21 |
20
|
simplbi |
|
| 22 |
21
|
nn0zd |
|
| 23 |
|
zsubcl |
|
| 24 |
1 23
|
mpan |
|
| 25 |
|
zsubcl |
|
| 26 |
1 25
|
mpan |
|
| 27 |
24 26
|
anim12i |
|
| 28 |
17 22 27
|
syl2an |
|
| 29 |
15
|
simprbi |
|
| 30 |
20
|
simprbi |
|
| 31 |
29 30
|
anim12i |
|
| 32 |
|
dvds2sub |
|
| 33 |
2 32
|
mp3an1 |
|
| 34 |
28 31 33
|
sylc |
|
| 35 |
|
zcn |
|
| 36 |
|
zcn |
|
| 37 |
1
|
zrei |
|
| 38 |
37
|
recni |
|
| 39 |
38
|
subidi |
|
| 40 |
39
|
oveq1i |
|
| 41 |
|
0cn |
|
| 42 |
|
subsub2 |
|
| 43 |
41 42
|
mp3an1 |
|
| 44 |
40 43
|
eqtrid |
|
| 45 |
|
sub4 |
|
| 46 |
38 38 45
|
mpanl12 |
|
| 47 |
|
subcl |
|
| 48 |
47
|
ancoms |
|
| 49 |
48
|
addlidd |
|
| 50 |
44 46 49
|
3eqtr3d |
|
| 51 |
35 36 50
|
syl2an |
|
| 52 |
17 22 51
|
syl2an |
|
| 53 |
52
|
breq2d |
|
| 54 |
34 53
|
mpbid |
|
| 55 |
|
zsubcl |
|
| 56 |
55
|
ancoms |
|
| 57 |
|
absdvdsb |
|
| 58 |
2 56 57
|
sylancr |
|
| 59 |
17 22 58
|
syl2an |
|
| 60 |
54 59
|
mpbid |
|
| 61 |
|
nnabscl |
|
| 62 |
2 3 61
|
mp2an |
|
| 63 |
62
|
nnzi |
|
| 64 |
|
divides |
|
| 65 |
63 56 64
|
sylancr |
|
| 66 |
17 22 65
|
syl2an |
|
| 67 |
60 66
|
mpbid |
|
| 68 |
67
|
adantr |
|
| 69 |
1 2 3 4
|
divalglem8 |
|
| 70 |
69
|
rexlimdv |
|
| 71 |
68 70
|
mpd |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
rgen2 |
|
| 74 |
|
breq1 |
|
| 75 |
74
|
reu4 |
|
| 76 |
12 73 75
|
mpbir2an |
|