Metamath Proof Explorer


Theorem djhexmid

Description: Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014)

Ref Expression
Hypotheses djhexmid.h H=LHypK
djhexmid.u U=DVecHKW
djhexmid.v V=BaseU
djhexmid.o ˙=ocHKW
djhexmid.j ˙=joinHKW
Assertion djhexmid KHLWHXVX˙˙X=V

Proof

Step Hyp Ref Expression
1 djhexmid.h H=LHypK
2 djhexmid.u U=DVecHKW
3 djhexmid.v V=BaseU
4 djhexmid.o ˙=ocHKW
5 djhexmid.j ˙=joinHKW
6 simpl KHLWHXVKHLWH
7 simpr KHLWHXVXV
8 1 2 3 4 dochssv KHLWHXV˙XV
9 1 2 3 4 5 djhval KHLWHXV˙XVX˙˙X=˙˙X˙˙X
10 6 7 8 9 syl12anc KHLWHXVX˙˙X=˙˙X˙˙X
11 eqid LSubSpU=LSubSpU
12 1 2 3 11 4 dochlss KHLWHXV˙XLSubSpU
13 eqid 0U=0U
14 1 2 11 13 4 dochnoncon KHLWH˙XLSubSpU˙X˙˙X=0U
15 12 14 syldan KHLWHXV˙X˙˙X=0U
16 1 2 4 3 13 doch1 KHLWH˙V=0U
17 16 adantr KHLWHXV˙V=0U
18 15 17 eqtr4d KHLWHXV˙X˙˙X=˙V
19 18 fveq2d KHLWHXV˙˙X˙˙X=˙˙V
20 eqid DIsoHKW=DIsoHKW
21 1 20 2 3 dih1rn KHLWHVranDIsoHKW
22 21 adantr KHLWHXVVranDIsoHKW
23 1 20 4 dochoc KHLWHVranDIsoHKW˙˙V=V
24 22 23 syldan KHLWHXV˙˙V=V
25 10 19 24 3eqtrd KHLWHXVX˙˙X=V