Metamath Proof Explorer


Theorem djhlsmcl

Description: A closed subspace sum equals subspace join. ( shjshseli analog.) (Contributed by NM, 13-Aug-2014)

Ref Expression
Hypotheses djhlsmcl.h H=LHypK
djhlsmcl.u U=DVecHKW
djhlsmcl.v V=BaseU
djhlsmcl.s S=LSubSpU
djhlsmcl.p ˙=LSSumU
djhlsmcl.i I=DIsoHKW
djhlsmcl.j ˙=joinHKW
djhlsmcl.k φKHLWH
djhlsmcl.x φXS
djhlsmcl.y φYS
Assertion djhlsmcl φX˙YranIX˙Y=X˙Y

Proof

Step Hyp Ref Expression
1 djhlsmcl.h H=LHypK
2 djhlsmcl.u U=DVecHKW
3 djhlsmcl.v V=BaseU
4 djhlsmcl.s S=LSubSpU
5 djhlsmcl.p ˙=LSSumU
6 djhlsmcl.i I=DIsoHKW
7 djhlsmcl.j ˙=joinHKW
8 djhlsmcl.k φKHLWH
9 djhlsmcl.x φXS
10 djhlsmcl.y φYS
11 8 adantr φX˙YranIKHLWH
12 3 4 lssss XSXV
13 9 12 syl φXV
14 13 adantr φX˙YranIXV
15 3 4 lssss YSYV
16 10 15 syl φYV
17 16 adantr φX˙YranIYV
18 eqid ocHKW=ocHKW
19 1 2 3 18 7 djhval2 KHLWHXVYVX˙Y=ocHKWocHKWXY
20 11 14 17 19 syl3anc φX˙YranIX˙Y=ocHKWocHKWXY
21 1 2 8 dvhlmod φULMod
22 21 adantr φX˙YranIULMod
23 9 adantr φX˙YranIXS
24 10 adantr φX˙YranIYS
25 eqid LSpanU=LSpanU
26 4 25 5 lsmsp ULModXSYSX˙Y=LSpanUXY
27 22 23 24 26 syl3anc φX˙YranIX˙Y=LSpanUXY
28 27 fveq2d φX˙YranIocHKWX˙Y=ocHKWLSpanUXY
29 13 16 unssd φXYV
30 29 adantr φX˙YranIXYV
31 1 2 18 3 25 11 30 dochocsp φX˙YranIocHKWLSpanUXY=ocHKWXY
32 28 31 eqtrd φX˙YranIocHKWX˙Y=ocHKWXY
33 32 fveq2d φX˙YranIocHKWocHKWX˙Y=ocHKWocHKWXY
34 1 6 18 dochoc KHLWHX˙YranIocHKWocHKWX˙Y=X˙Y
35 8 34 sylan φX˙YranIocHKWocHKWX˙Y=X˙Y
36 20 33 35 3eqtr2rd φX˙YranIX˙Y=X˙Y
37 36 ex φX˙YranIX˙Y=X˙Y
38 1 6 2 3 7 djhcl KHLWHXVYVX˙YranI
39 8 13 16 38 syl12anc φX˙YranI
40 eleq1a X˙YranIX˙Y=X˙YX˙YranI
41 39 40 syl φX˙Y=X˙YX˙YranI
42 37 41 impbid φX˙YranIX˙Y=X˙Y