Metamath Proof Explorer


Theorem dochexmidlem2

Description: Lemma for dochexmid . (Contributed by NM, 14-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem2.pp φpA
dochexmidlem2.qq φqA
dochexmidlem2.rr φrA
dochexmidlem2.ql φq˙X
dochexmidlem2.rl φrX
dochexmidlem2.pl φpr˙q
Assertion dochexmidlem2 φpX˙˙X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem2.pp φpA
12 dochexmidlem2.qq φqA
13 dochexmidlem2.rr φrA
14 dochexmidlem2.ql φq˙X
15 dochexmidlem2.rl φrX
16 dochexmidlem2.pl φpr˙q
17 1 3 9 dvhlmod φULMod
18 5 lsssssubg ULModSSubGrpU
19 17 18 syl φSSubGrpU
20 19 10 sseldd φXSubGrpU
21 4 5 lssss XSXV
22 10 21 syl φXV
23 1 3 4 5 2 dochlss KHLWHXV˙XS
24 9 22 23 syl2anc φ˙XS
25 19 24 sseldd φ˙XSubGrpU
26 7 lsmless12 XSubGrpU˙XSubGrpUrXq˙Xr˙qX˙˙X
27 20 25 15 14 26 syl22anc φr˙qX˙˙X
28 16 27 sstrd φpX˙˙X