Description: A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochshpsat.h | |
|
dochshpsat.o | |
||
dochshpsat.u | |
||
dochshpsat.a | |
||
dochshpsat.y | |
||
dochshpsat.k | |
||
dochshpsat.x | |
||
Assertion | dochshpsat | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochshpsat.h | |
|
2 | dochshpsat.o | |
|
3 | dochshpsat.u | |
|
4 | dochshpsat.a | |
|
5 | dochshpsat.y | |
|
6 | dochshpsat.k | |
|
7 | dochshpsat.x | |
|
8 | simpr | |
|
9 | 7 | adantr | |
10 | 8 9 | eqeltrd | |
11 | eqid | |
|
12 | 1 3 6 | dvhlmod | |
13 | 11 5 12 7 | lshplss | |
14 | eqid | |
|
15 | 14 11 | lssss | |
16 | 13 15 | syl | |
17 | 1 3 14 11 2 | dochlss | |
18 | 6 16 17 | syl2anc | |
19 | 1 2 3 11 4 5 6 18 | dochsatshpb | |
20 | 19 | adantr | |
21 | 10 20 | mpbird | |
22 | eqid | |
|
23 | 12 | adantr | |
24 | simpr | |
|
25 | 22 4 23 24 | lsatn0 | |
26 | 25 | neneqd | |
27 | 6 | adantr | |
28 | 1 3 2 14 22 | doch0 | |
29 | 27 28 | syl | |
30 | 29 | eqeq2d | |
31 | eqid | |
|
32 | 1 31 3 14 2 | dochcl | |
33 | 6 16 32 | syl2anc | |
34 | 1 31 3 22 | dih0rn | |
35 | 6 34 | syl | |
36 | 1 31 2 6 33 35 | doch11 | |
37 | 36 | adantr | |
38 | 30 37 | bitr3d | |
39 | 26 38 | mtbird | |
40 | 1 2 3 14 5 6 7 | dochshpncl | |
41 | 40 | necon1bbid | |
42 | 41 | adantr | |
43 | 39 42 | mpbid | |
44 | 21 43 | impbida | |