Metamath Proof Explorer


Theorem dochshpsat

Description: A hyperplane is closed iff its orthocomplement is an atom. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochshpsat.h H=LHypK
dochshpsat.o ˙=ocHKW
dochshpsat.u U=DVecHKW
dochshpsat.a A=LSAtomsU
dochshpsat.y Y=LSHypU
dochshpsat.k φKHLWH
dochshpsat.x φXY
Assertion dochshpsat φ˙˙X=X˙XA

Proof

Step Hyp Ref Expression
1 dochshpsat.h H=LHypK
2 dochshpsat.o ˙=ocHKW
3 dochshpsat.u U=DVecHKW
4 dochshpsat.a A=LSAtomsU
5 dochshpsat.y Y=LSHypU
6 dochshpsat.k φKHLWH
7 dochshpsat.x φXY
8 simpr φ˙˙X=X˙˙X=X
9 7 adantr φ˙˙X=XXY
10 8 9 eqeltrd φ˙˙X=X˙˙XY
11 eqid LSubSpU=LSubSpU
12 1 3 6 dvhlmod φULMod
13 11 5 12 7 lshplss φXLSubSpU
14 eqid BaseU=BaseU
15 14 11 lssss XLSubSpUXBaseU
16 13 15 syl φXBaseU
17 1 3 14 11 2 dochlss KHLWHXBaseU˙XLSubSpU
18 6 16 17 syl2anc φ˙XLSubSpU
19 1 2 3 11 4 5 6 18 dochsatshpb φ˙XA˙˙XY
20 19 adantr φ˙˙X=X˙XA˙˙XY
21 10 20 mpbird φ˙˙X=X˙XA
22 eqid 0U=0U
23 12 adantr φ˙XAULMod
24 simpr φ˙XA˙XA
25 22 4 23 24 lsatn0 φ˙XA˙X0U
26 25 neneqd φ˙XA¬˙X=0U
27 6 adantr φ˙XAKHLWH
28 1 3 2 14 22 doch0 KHLWH˙0U=BaseU
29 27 28 syl φ˙XA˙0U=BaseU
30 29 eqeq2d φ˙XA˙˙X=˙0U˙˙X=BaseU
31 eqid DIsoHKW=DIsoHKW
32 1 31 3 14 2 dochcl KHLWHXBaseU˙XranDIsoHKW
33 6 16 32 syl2anc φ˙XranDIsoHKW
34 1 31 3 22 dih0rn KHLWH0UranDIsoHKW
35 6 34 syl φ0UranDIsoHKW
36 1 31 2 6 33 35 doch11 φ˙˙X=˙0U˙X=0U
37 36 adantr φ˙XA˙˙X=˙0U˙X=0U
38 30 37 bitr3d φ˙XA˙˙X=BaseU˙X=0U
39 26 38 mtbird φ˙XA¬˙˙X=BaseU
40 1 2 3 14 5 6 7 dochshpncl φ˙˙XX˙˙X=BaseU
41 40 necon1bbid φ¬˙˙X=BaseU˙˙X=X
42 41 adantr φ˙XA¬˙˙X=BaseU˙˙X=X
43 39 42 mpbid φ˙XA˙˙X=X
44 21 43 impbida φ˙˙X=X˙XA