Metamath Proof Explorer


Theorem dochsnkr2cl

Description: The X determining functional G belongs to the atom formed by the orthocomplement of the kernel. (Contributed by NM, 4-Jan-2015)

Ref Expression
Hypotheses dochsnkr2.h H = LHyp K
dochsnkr2.o ˙ = ocH K W
dochsnkr2.u U = DVecH K W
dochsnkr2.v V = Base U
dochsnkr2.z 0 ˙ = 0 U
dochsnkr2.a + ˙ = + U
dochsnkr2.t · ˙ = U
dochsnkr2.l L = LKer U
dochsnkr2.d D = Scalar U
dochsnkr2.r R = Base D
dochsnkr2.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
dochsnkr2.k φ K HL W H
dochsnkr2.x φ X V 0 ˙
Assertion dochsnkr2cl φ X ˙ L G 0 ˙

Proof

Step Hyp Ref Expression
1 dochsnkr2.h H = LHyp K
2 dochsnkr2.o ˙ = ocH K W
3 dochsnkr2.u U = DVecH K W
4 dochsnkr2.v V = Base U
5 dochsnkr2.z 0 ˙ = 0 U
6 dochsnkr2.a + ˙ = + U
7 dochsnkr2.t · ˙ = U
8 dochsnkr2.l L = LKer U
9 dochsnkr2.d D = Scalar U
10 dochsnkr2.r R = Base D
11 dochsnkr2.g G = v V ι k R | w ˙ X v = w + ˙ k · ˙ X
12 dochsnkr2.k φ K HL W H
13 dochsnkr2.x φ X V 0 ˙
14 1 3 12 dvhlmod φ U LMod
15 13 eldifad φ X V
16 eqid LSpan U = LSpan U
17 4 16 lspsnid U LMod X V X LSpan U X
18 14 15 17 syl2anc φ X LSpan U X
19 1 2 3 4 5 6 7 8 9 10 11 12 13 dochsnkr2 φ L G = ˙ X
20 15 snssd φ X V
21 1 3 2 4 16 12 20 dochocsp φ ˙ LSpan U X = ˙ X
22 19 21 eqtr4d φ L G = ˙ LSpan U X
23 22 fveq2d φ ˙ L G = ˙ ˙ LSpan U X
24 eqid DIsoH K W = DIsoH K W
25 1 3 4 16 24 dihlsprn K HL W H X V LSpan U X ran DIsoH K W
26 12 15 25 syl2anc φ LSpan U X ran DIsoH K W
27 1 24 2 dochoc K HL W H LSpan U X ran DIsoH K W ˙ ˙ LSpan U X = LSpan U X
28 12 26 27 syl2anc φ ˙ ˙ LSpan U X = LSpan U X
29 23 28 eqtr2d φ LSpan U X = ˙ L G
30 18 29 eleqtrd φ X ˙ L G
31 eldifsni X V 0 ˙ X 0 ˙
32 13 31 syl φ X 0 ˙
33 eldifsn X ˙ L G 0 ˙ X ˙ L G X 0 ˙
34 30 32 33 sylanbrc φ X ˙ L G 0 ˙