Metamath Proof Explorer


Theorem domssex

Description: Weakening of domssex2 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion domssex ABxAxBx

Proof

Step Hyp Ref Expression
1 brdomi ABff:A1-1B
2 reldom Rel
3 2 brrelex2i ABBV
4 vex fV
5 f1stres 1stBranf×𝒫ranA:Branf×𝒫ranABranf
6 difexg BVBranfV
7 6 adantl f:A1-1BBVBranfV
8 snex 𝒫ranAV
9 xpexg BranfV𝒫ranAVBranf×𝒫ranAV
10 7 8 9 sylancl f:A1-1BBVBranf×𝒫ranAV
11 fex2 1stBranf×𝒫ranA:Branf×𝒫ranABranfBranf×𝒫ranAVBranfV1stBranf×𝒫ranAV
12 5 10 7 11 mp3an2i f:A1-1BBV1stBranf×𝒫ranAV
13 unexg fV1stBranf×𝒫ranAVf1stBranf×𝒫ranAV
14 4 12 13 sylancr f:A1-1BBVf1stBranf×𝒫ranAV
15 cnvexg f1stBranf×𝒫ranAVf1stBranf×𝒫ranA-1V
16 14 15 syl f:A1-1BBVf1stBranf×𝒫ranA-1V
17 rnexg f1stBranf×𝒫ranA-1Vranf1stBranf×𝒫ranA-1V
18 16 17 syl f:A1-1BBVranf1stBranf×𝒫ranA-1V
19 simpl f:A1-1BBVf:A1-1B
20 f1dm f:A1-1Bdomf=A
21 4 dmex domfV
22 20 21 eqeltrrdi f:A1-1BAV
23 22 adantr f:A1-1BBVAV
24 simpr f:A1-1BBVBV
25 eqid f1stBranf×𝒫ranA-1=f1stBranf×𝒫ranA-1
26 25 domss2 f:A1-1BAVBVf1stBranf×𝒫ranA-1:B1-1 ontoranf1stBranf×𝒫ranA-1Aranf1stBranf×𝒫ranA-1f1stBranf×𝒫ranA-1f=IA
27 19 23 24 26 syl3anc f:A1-1BBVf1stBranf×𝒫ranA-1:B1-1 ontoranf1stBranf×𝒫ranA-1Aranf1stBranf×𝒫ranA-1f1stBranf×𝒫ranA-1f=IA
28 27 simp2d f:A1-1BBVAranf1stBranf×𝒫ranA-1
29 27 simp1d f:A1-1BBVf1stBranf×𝒫ranA-1:B1-1 ontoranf1stBranf×𝒫ranA-1
30 f1oen3g f1stBranf×𝒫ranA-1Vf1stBranf×𝒫ranA-1:B1-1 ontoranf1stBranf×𝒫ranA-1Branf1stBranf×𝒫ranA-1
31 16 29 30 syl2anc f:A1-1BBVBranf1stBranf×𝒫ranA-1
32 28 31 jca f:A1-1BBVAranf1stBranf×𝒫ranA-1Branf1stBranf×𝒫ranA-1
33 sseq2 x=ranf1stBranf×𝒫ranA-1AxAranf1stBranf×𝒫ranA-1
34 breq2 x=ranf1stBranf×𝒫ranA-1BxBranf1stBranf×𝒫ranA-1
35 33 34 anbi12d x=ranf1stBranf×𝒫ranA-1AxBxAranf1stBranf×𝒫ranA-1Branf1stBranf×𝒫ranA-1
36 18 32 35 spcedv f:A1-1BBVxAxBx
37 36 ex f:A1-1BBVxAxBx
38 37 exlimiv ff:A1-1BBVxAxBx
39 1 3 38 sylc ABxAxBx