Metamath Proof Explorer


Theorem dprdpr

Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses dmdprdpr.z Z=CntzG
dmdprdpr.0 0˙=0G
dmdprdpr.s φSSubGrpG
dmdprdpr.t φTSubGrpG
dprdpr.s ˙=LSSumG
dprdpr.1 φSZT
dprdpr.2 φST=0˙
Assertion dprdpr φGDProdS1𝑜T=S˙T

Proof

Step Hyp Ref Expression
1 dmdprdpr.z Z=CntzG
2 dmdprdpr.0 0˙=0G
3 dmdprdpr.s φSSubGrpG
4 dmdprdpr.t φTSubGrpG
5 dprdpr.s ˙=LSSumG
6 dprdpr.1 φSZT
7 dprdpr.2 φST=0˙
8 xpscf S1𝑜T:2𝑜SubGrpGSSubGrpGTSubGrpG
9 3 4 8 sylanbrc φS1𝑜T:2𝑜SubGrpG
10 1n0 1𝑜
11 10 necomi 1𝑜
12 disjsn2 1𝑜1𝑜=
13 11 12 mp1i φ1𝑜=
14 df2o3 2𝑜=1𝑜
15 df-pr 1𝑜=1𝑜
16 14 15 eqtri 2𝑜=1𝑜
17 16 a1i φ2𝑜=1𝑜
18 1 2 3 4 dmdprdpr φGdomDProdS1𝑜TSZTST=0˙
19 6 7 18 mpbir2and φGdomDProdS1𝑜T
20 9 13 17 5 19 dprdsplit φGDProdS1𝑜T=GDProdS1𝑜T˙GDProdS1𝑜T1𝑜
21 9 ffnd φS1𝑜TFn2𝑜
22 0ex V
23 22 prid1 1𝑜
24 23 14 eleqtrri 2𝑜
25 fnressn S1𝑜TFn2𝑜2𝑜S1𝑜T=S1𝑜T
26 21 24 25 sylancl φS1𝑜T=S1𝑜T
27 fvpr0o SSubGrpGS1𝑜T=S
28 3 27 syl φS1𝑜T=S
29 28 opeq2d φS1𝑜T=S
30 29 sneqd φS1𝑜T=S
31 26 30 eqtrd φS1𝑜T=S
32 31 oveq2d φGDProdS1𝑜T=GDProdS
33 dprdsn VSSubGrpGGdomDProdSGDProdS=S
34 22 3 33 sylancr φGdomDProdSGDProdS=S
35 34 simprd φGDProdS=S
36 32 35 eqtrd φGDProdS1𝑜T=S
37 1oex 1𝑜V
38 37 prid2 1𝑜1𝑜
39 38 14 eleqtrri 1𝑜2𝑜
40 fnressn S1𝑜TFn2𝑜1𝑜2𝑜S1𝑜T1𝑜=1𝑜S1𝑜T1𝑜
41 21 39 40 sylancl φS1𝑜T1𝑜=1𝑜S1𝑜T1𝑜
42 fvpr1o TSubGrpGS1𝑜T1𝑜=T
43 4 42 syl φS1𝑜T1𝑜=T
44 43 opeq2d φ1𝑜S1𝑜T1𝑜=1𝑜T
45 44 sneqd φ1𝑜S1𝑜T1𝑜=1𝑜T
46 41 45 eqtrd φS1𝑜T1𝑜=1𝑜T
47 46 oveq2d φGDProdS1𝑜T1𝑜=GDProd1𝑜T
48 1on 1𝑜On
49 dprdsn 1𝑜OnTSubGrpGGdomDProd1𝑜TGDProd1𝑜T=T
50 48 4 49 sylancr φGdomDProd1𝑜TGDProd1𝑜T=T
51 50 simprd φGDProd1𝑜T=T
52 47 51 eqtrd φGDProdS1𝑜T1𝑜=T
53 36 52 oveq12d φGDProdS1𝑜T˙GDProdS1𝑜T1𝑜=S˙T
54 20 53 eqtrd φGDProdS1𝑜T=S˙T