Description: A singleton family is an internal direct product, the product of which is the given subgroup. (Contributed by Mario Carneiro, 26-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dmdprdpr.z | |
|
dmdprdpr.0 | |
||
dmdprdpr.s | |
||
dmdprdpr.t | |
||
dprdpr.s | |
||
dprdpr.1 | |
||
dprdpr.2 | |
||
Assertion | dprdpr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdprdpr.z | |
|
2 | dmdprdpr.0 | |
|
3 | dmdprdpr.s | |
|
4 | dmdprdpr.t | |
|
5 | dprdpr.s | |
|
6 | dprdpr.1 | |
|
7 | dprdpr.2 | |
|
8 | xpscf | |
|
9 | 3 4 8 | sylanbrc | |
10 | 1n0 | |
|
11 | 10 | necomi | |
12 | disjsn2 | |
|
13 | 11 12 | mp1i | |
14 | df2o3 | |
|
15 | df-pr | |
|
16 | 14 15 | eqtri | |
17 | 16 | a1i | |
18 | 1 2 3 4 | dmdprdpr | |
19 | 6 7 18 | mpbir2and | |
20 | 9 13 17 5 19 | dprdsplit | |
21 | 9 | ffnd | |
22 | 0ex | |
|
23 | 22 | prid1 | |
24 | 23 14 | eleqtrri | |
25 | fnressn | |
|
26 | 21 24 25 | sylancl | |
27 | fvpr0o | |
|
28 | 3 27 | syl | |
29 | 28 | opeq2d | |
30 | 29 | sneqd | |
31 | 26 30 | eqtrd | |
32 | 31 | oveq2d | |
33 | dprdsn | |
|
34 | 22 3 33 | sylancr | |
35 | 34 | simprd | |
36 | 32 35 | eqtrd | |
37 | 1oex | |
|
38 | 37 | prid2 | |
39 | 38 14 | eleqtrri | |
40 | fnressn | |
|
41 | 21 39 40 | sylancl | |
42 | fvpr1o | |
|
43 | 4 42 | syl | |
44 | 43 | opeq2d | |
45 | 44 | sneqd | |
46 | 41 45 | eqtrd | |
47 | 46 | oveq2d | |
48 | 1on | |
|
49 | dprdsn | |
|
50 | 48 4 49 | sylancr | |
51 | 50 | simprd | |
52 | 47 51 | eqtrd | |
53 | 36 52 | oveq12d | |
54 | 20 53 | eqtrd | |