Metamath Proof Explorer


Theorem drngid2

Description: Properties showing that an element I is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013)

Ref Expression
Hypotheses drngid2.b B=BaseR
drngid2.t ·˙=R
drngid2.o 0˙=0R
drngid2.u 1˙=1R
Assertion drngid2 RDivRingIBI0˙I·˙I=I1˙=I

Proof

Step Hyp Ref Expression
1 drngid2.b B=BaseR
2 drngid2.t ·˙=R
3 drngid2.o 0˙=0R
4 drngid2.u 1˙=1R
5 df-3an IBI0˙I·˙I=IIBI0˙I·˙I=I
6 eldifsn IB0˙IBI0˙
7 6 anbi1i IB0˙I·˙I=IIBI0˙I·˙I=I
8 5 7 bitr4i IBI0˙I·˙I=IIB0˙I·˙I=I
9 eqid mulGrpR𝑠B0˙=mulGrpR𝑠B0˙
10 1 3 9 drngmgp RDivRingmulGrpR𝑠B0˙Grp
11 difss B0˙B
12 eqid mulGrpR=mulGrpR
13 12 1 mgpbas B=BasemulGrpR
14 9 13 ressbas2 B0˙BB0˙=BasemulGrpR𝑠B0˙
15 11 14 ax-mp B0˙=BasemulGrpR𝑠B0˙
16 1 fvexi BV
17 difexg BVB0˙V
18 12 2 mgpplusg ·˙=+mulGrpR
19 9 18 ressplusg B0˙V·˙=+mulGrpR𝑠B0˙
20 16 17 19 mp2b ·˙=+mulGrpR𝑠B0˙
21 eqid 0mulGrpR𝑠B0˙=0mulGrpR𝑠B0˙
22 15 20 21 isgrpid2 mulGrpR𝑠B0˙GrpIB0˙I·˙I=I0mulGrpR𝑠B0˙=I
23 10 22 syl RDivRingIB0˙I·˙I=I0mulGrpR𝑠B0˙=I
24 8 23 bitrid RDivRingIBI0˙I·˙I=I0mulGrpR𝑠B0˙=I
25 1 3 4 9 drngid RDivRing1˙=0mulGrpR𝑠B0˙
26 25 eqeq1d RDivRing1˙=I0mulGrpR𝑠B0˙=I
27 24 26 bitr4d RDivRingIBI0˙I·˙I=I1˙=I