Description: Properties showing that an element I is the identity element of a division ring. (Contributed by Mario Carneiro, 11-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drngid2.b | |
|
drngid2.t | |
||
drngid2.o | |
||
drngid2.u | |
||
Assertion | drngid2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngid2.b | |
|
2 | drngid2.t | |
|
3 | drngid2.o | |
|
4 | drngid2.u | |
|
5 | df-3an | |
|
6 | eldifsn | |
|
7 | 6 | anbi1i | |
8 | 5 7 | bitr4i | |
9 | eqid | |
|
10 | 1 3 9 | drngmgp | |
11 | difss | |
|
12 | eqid | |
|
13 | 12 1 | mgpbas | |
14 | 9 13 | ressbas2 | |
15 | 11 14 | ax-mp | |
16 | 1 | fvexi | |
17 | difexg | |
|
18 | 12 2 | mgpplusg | |
19 | 9 18 | ressplusg | |
20 | 16 17 19 | mp2b | |
21 | eqid | |
|
22 | 15 20 21 | isgrpid2 | |
23 | 10 22 | syl | |
24 | 8 23 | bitrid | |
25 | 1 3 4 9 | drngid | |
26 | 25 | eqeq1d | |
27 | 24 26 | bitr4d | |