Description: For finite products, the direct sum is just the module product. See also the observation in Lang p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dsmmfi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | dsmmval2 | |
3 | eqid | |
|
4 | eqid | |
|
5 | noel | |
|
6 | reldmprds | |
|
7 | 6 | ovprc1 | |
8 | 7 | fveq2d | |
9 | base0 | |
|
10 | 8 9 | eqtr4di | |
11 | 10 | eleq2d | |
12 | 5 11 | mtbiri | |
13 | 12 | con4i | |
14 | 13 | adantl | |
15 | simplr | |
|
16 | simpll | |
|
17 | simpr | |
|
18 | 3 4 14 15 16 17 | prdsbasfn | |
19 | 18 | fndmd | |
20 | 19 15 | eqeltrd | |
21 | difss | |
|
22 | dmss | |
|
23 | 21 22 | ax-mp | |
24 | ssfi | |
|
25 | 20 23 24 | sylancl | |
26 | 25 | ralrimiva | |
27 | rabid2 | |
|
28 | 26 27 | sylibr | |
29 | eqid | |
|
30 | 3 29 | dsmmbas2 | |
31 | 28 30 | eqtr2d | |
32 | 31 | oveq2d | |
33 | ovex | |
|
34 | 4 | ressid | |
35 | 33 34 | ax-mp | |
36 | 32 35 | eqtrdi | |
37 | 2 36 | eqtrid | |