Metamath Proof Explorer


Theorem dsmmfi

Description: For finite products, the direct sum is just the module product. See also the observation in Lang p. 129. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion dsmmfi RFnIIFinSmR=S𝑠R

Proof

Step Hyp Ref Expression
1 eqid BaseSmR=BaseSmR
2 1 dsmmval2 SmR=S𝑠R𝑠BaseSmR
3 eqid S𝑠R=S𝑠R
4 eqid BaseS𝑠R=BaseS𝑠R
5 noel ¬f
6 reldmprds Reldom𝑠
7 6 ovprc1 ¬SVS𝑠R=
8 7 fveq2d ¬SVBaseS𝑠R=Base
9 base0 =Base
10 8 9 eqtr4di ¬SVBaseS𝑠R=
11 10 eleq2d ¬SVfBaseS𝑠Rf
12 5 11 mtbiri ¬SV¬fBaseS𝑠R
13 12 con4i fBaseS𝑠RSV
14 13 adantl RFnIIFinfBaseS𝑠RSV
15 simplr RFnIIFinfBaseS𝑠RIFin
16 simpll RFnIIFinfBaseS𝑠RRFnI
17 simpr RFnIIFinfBaseS𝑠RfBaseS𝑠R
18 3 4 14 15 16 17 prdsbasfn RFnIIFinfBaseS𝑠RfFnI
19 18 fndmd RFnIIFinfBaseS𝑠Rdomf=I
20 19 15 eqeltrd RFnIIFinfBaseS𝑠RdomfFin
21 difss f0𝑔Rf
22 dmss f0𝑔Rfdomf0𝑔Rdomf
23 21 22 ax-mp domf0𝑔Rdomf
24 ssfi domfFindomf0𝑔Rdomfdomf0𝑔RFin
25 20 23 24 sylancl RFnIIFinfBaseS𝑠Rdomf0𝑔RFin
26 25 ralrimiva RFnIIFinfBaseS𝑠Rdomf0𝑔RFin
27 rabid2 BaseS𝑠R=fBaseS𝑠R|domf0𝑔RFinfBaseS𝑠Rdomf0𝑔RFin
28 26 27 sylibr RFnIIFinBaseS𝑠R=fBaseS𝑠R|domf0𝑔RFin
29 eqid fBaseS𝑠R|domf0𝑔RFin=fBaseS𝑠R|domf0𝑔RFin
30 3 29 dsmmbas2 RFnIIFinfBaseS𝑠R|domf0𝑔RFin=BaseSmR
31 28 30 eqtr2d RFnIIFinBaseSmR=BaseS𝑠R
32 31 oveq2d RFnIIFinS𝑠R𝑠BaseSmR=S𝑠R𝑠BaseS𝑠R
33 ovex S𝑠RV
34 4 ressid S𝑠RVS𝑠R𝑠BaseS𝑠R=S𝑠R
35 33 34 ax-mp S𝑠R𝑠BaseS𝑠R=S𝑠R
36 32 35 eqtrdi RFnIIFinS𝑠R𝑠BaseSmR=S𝑠R
37 2 36 eqtrid RFnIIFinSmR=S𝑠R