Description: Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvadia.h | |
|
dvadia.u | |
||
dvadia.i | |
||
dvadia.n | |
||
dvadia.s | |
||
Assertion | dvadiaN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | |
|
2 | dvadia.u | |
|
3 | dvadia.i | |
|
4 | dvadia.n | |
|
5 | dvadia.s | |
|
6 | simprr | |
|
7 | eqid | |
|
8 | 7 5 | lssss | |
9 | 8 | ad2antrl | |
10 | eqid | |
|
11 | 1 10 2 7 | dvavbase | |
12 | 11 | adantr | |
13 | 9 12 | sseqtrd | |
14 | 1 10 3 4 | docaclN | |
15 | 13 14 | syldan | |
16 | 1 10 3 | diaelrnN | |
17 | 15 16 | syldan | |
18 | 1 10 3 4 | docaclN | |
19 | 17 18 | syldan | |
20 | 6 19 | eqeltrrd | |