Metamath Proof Explorer


Theorem dvadiaN

Description: Any closed subspace is a member of the range of partial isomorphism A, showing the isomorphism maps onto the set of closed subspaces of partial vector space A. (Contributed by NM, 17-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dvadia.h H=LHypK
dvadia.u U=DVecAKW
dvadia.i I=DIsoAKW
dvadia.n ˙=ocAKW
dvadia.s S=LSubSpU
Assertion dvadiaN KHLWHXS˙˙X=XXranI

Proof

Step Hyp Ref Expression
1 dvadia.h H=LHypK
2 dvadia.u U=DVecAKW
3 dvadia.i I=DIsoAKW
4 dvadia.n ˙=ocAKW
5 dvadia.s S=LSubSpU
6 simprr KHLWHXS˙˙X=X˙˙X=X
7 eqid BaseU=BaseU
8 7 5 lssss XSXBaseU
9 8 ad2antrl KHLWHXS˙˙X=XXBaseU
10 eqid LTrnKW=LTrnKW
11 1 10 2 7 dvavbase KHLWHBaseU=LTrnKW
12 11 adantr KHLWHXS˙˙X=XBaseU=LTrnKW
13 9 12 sseqtrd KHLWHXS˙˙X=XXLTrnKW
14 1 10 3 4 docaclN KHLWHXLTrnKW˙XranI
15 13 14 syldan KHLWHXS˙˙X=X˙XranI
16 1 10 3 diaelrnN KHLWH˙XranI˙XLTrnKW
17 15 16 syldan KHLWHXS˙˙X=X˙XLTrnKW
18 1 10 3 4 docaclN KHLWH˙XLTrnKW˙˙XranI
19 17 18 syldan KHLWHXS˙˙X=X˙˙XranI
20 6 19 eqeltrrd KHLWHXS˙˙X=XXranI