Metamath Proof Explorer


Theorem dvbdfbdioo

Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvbdfbdioo.a φA
dvbdfbdioo.b φB
dvbdfbdioo.altb φA<B
dvbdfbdioo.f φF:AB
dvbdfbdioo.dmdv φdomF=AB
dvbdfbdioo.dvbd φaxABFxa
Assertion dvbdfbdioo φbxABFxb

Proof

Step Hyp Ref Expression
1 dvbdfbdioo.a φA
2 dvbdfbdioo.b φB
3 dvbdfbdioo.altb φA<B
4 dvbdfbdioo.f φF:AB
5 dvbdfbdioo.dmdv φdomF=AB
6 dvbdfbdioo.dvbd φaxABFxa
7 1 rexrd φA*
8 2 rexrd φB*
9 1 2 readdcld φA+B
10 9 rehalfcld φA+B2
11 avglt1 ABA<BA<A+B2
12 1 2 11 syl2anc φA<BA<A+B2
13 3 12 mpbid φA<A+B2
14 avglt2 ABA<BA+B2<B
15 1 2 14 syl2anc φA<BA+B2<B
16 3 15 mpbid φA+B2<B
17 7 8 10 13 16 eliood φA+B2AB
18 4 17 ffvelcdmd φFA+B2
19 18 recnd φFA+B2
20 19 abscld φFA+B2
21 20 ad2antrr φaxABFxaFA+B2
22 simplr φaxABFxaa
23 2 ad2antrr φaxABFxaB
24 1 ad2antrr φaxABFxaA
25 23 24 resubcld φaxABFxaBA
26 22 25 remulcld φaxABFxaaBA
27 21 26 readdcld φaxABFxaFA+B2+aBA
28 3 ad2antrr φaxABFxaA<B
29 4 ad2antrr φaxABFxaF:AB
30 5 ad2antrr φaxABFxadomF=AB
31 2fveq3 x=yFx=Fy
32 31 breq1d x=yFxaFya
33 32 cbvralvw xABFxayABFya
34 33 biimpi xABFxayABFya
35 34 adantl φaxABFxayABFya
36 eqid FA+B2+aBA=FA+B2+aBA
37 24 23 28 29 30 22 35 36 dvbdfbdioolem2 φaxABFxayABFyFA+B2+aBA
38 2fveq3 x=yFx=Fy
39 38 breq1d x=yFxbFyb
40 39 cbvralvw xABFxbyABFyb
41 breq2 b=FA+B2+aBAFybFyFA+B2+aBA
42 41 ralbidv b=FA+B2+aBAyABFybyABFyFA+B2+aBA
43 40 42 bitrid b=FA+B2+aBAxABFxbyABFyFA+B2+aBA
44 43 rspcev FA+B2+aBAyABFyFA+B2+aBAbxABFxb
45 27 37 44 syl2anc φaxABFxabxABFxb
46 45 6 r19.29a φbxABFxb