Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvbdfbdioo.a | |
|
dvbdfbdioo.b | |
||
dvbdfbdioo.altb | |
||
dvbdfbdioo.f | |
||
dvbdfbdioo.dmdv | |
||
dvbdfbdioo.dvbd | |
||
Assertion | dvbdfbdioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvbdfbdioo.a | |
|
2 | dvbdfbdioo.b | |
|
3 | dvbdfbdioo.altb | |
|
4 | dvbdfbdioo.f | |
|
5 | dvbdfbdioo.dmdv | |
|
6 | dvbdfbdioo.dvbd | |
|
7 | 1 | rexrd | |
8 | 2 | rexrd | |
9 | 1 2 | readdcld | |
10 | 9 | rehalfcld | |
11 | avglt1 | |
|
12 | 1 2 11 | syl2anc | |
13 | 3 12 | mpbid | |
14 | avglt2 | |
|
15 | 1 2 14 | syl2anc | |
16 | 3 15 | mpbid | |
17 | 7 8 10 13 16 | eliood | |
18 | 4 17 | ffvelcdmd | |
19 | 18 | recnd | |
20 | 19 | abscld | |
21 | 20 | ad2antrr | |
22 | simplr | |
|
23 | 2 | ad2antrr | |
24 | 1 | ad2antrr | |
25 | 23 24 | resubcld | |
26 | 22 25 | remulcld | |
27 | 21 26 | readdcld | |
28 | 3 | ad2antrr | |
29 | 4 | ad2antrr | |
30 | 5 | ad2antrr | |
31 | 2fveq3 | |
|
32 | 31 | breq1d | |
33 | 32 | cbvralvw | |
34 | 33 | biimpi | |
35 | 34 | adantl | |
36 | eqid | |
|
37 | 24 23 28 29 30 22 35 36 | dvbdfbdioolem2 | |
38 | 2fveq3 | |
|
39 | 38 | breq1d | |
40 | 39 | cbvralvw | |
41 | breq2 | |
|
42 | 41 | ralbidv | |
43 | 40 42 | bitrid | |
44 | 43 | rspcev | |
45 | 27 37 44 | syl2anc | |
46 | 45 6 | r19.29a | |