Metamath Proof Explorer


Theorem dvbdfbdioolem2

Description: A function on an open interval, with bounded derivative, is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvbdfbdioolem2.a φA
dvbdfbdioolem2.b φB
dvbdfbdioolem2.altb φA<B
dvbdfbdioolem2.f φF:AB
dvbdfbdioolem2.dmdv φdomF=AB
dvbdfbdioolem2.k φK
dvbdfbdioolem2.dvbd φxABFxK
dvbdfbdioolem2.m M=FA+B2+KBA
Assertion dvbdfbdioolem2 φxABFxM

Proof

Step Hyp Ref Expression
1 dvbdfbdioolem2.a φA
2 dvbdfbdioolem2.b φB
3 dvbdfbdioolem2.altb φA<B
4 dvbdfbdioolem2.f φF:AB
5 dvbdfbdioolem2.dmdv φdomF=AB
6 dvbdfbdioolem2.k φK
7 dvbdfbdioolem2.dvbd φxABFxK
8 dvbdfbdioolem2.m M=FA+B2+KBA
9 4 ffvelcdmda φxABFx
10 9 recnd φxABFx
11 10 abscld φxABFx
12 1 rexrd φA*
13 2 rexrd φB*
14 1 2 readdcld φA+B
15 14 rehalfcld φA+B2
16 avglt1 ABA<BA<A+B2
17 1 2 16 syl2anc φA<BA<A+B2
18 3 17 mpbid φA<A+B2
19 avglt2 ABA<BA+B2<B
20 1 2 19 syl2anc φA<BA+B2<B
21 3 20 mpbid φA+B2<B
22 12 13 15 18 21 eliood φA+B2AB
23 4 22 ffvelcdmd φFA+B2
24 23 recnd φFA+B2
25 24 abscld φFA+B2
26 25 adantr φxABFA+B2
27 11 26 resubcld φxABFxFA+B2
28 6 adantr φxABK
29 2 adantr φxABB
30 1 adantr φxABA
31 29 30 resubcld φxABBA
32 28 31 remulcld φxABKBA
33 24 adantr φxABFA+B2
34 10 33 subcld φxABFxFA+B2
35 34 abscld φxABFxFA+B2
36 10 33 abs2difd φxABFxFA+B2FxFA+B2
37 simpll φxABA+B2<xφ
38 15 rexrd φA+B2*
39 38 ad2antrr φxABA+B2<xA+B2*
40 13 ad2antrr φxABA+B2<xB*
41 elioore xABx
42 41 adantl φxABx
43 42 adantr φxABA+B2<xx
44 simpr φxABA+B2<xA+B2<x
45 12 adantr φxABA*
46 13 adantr φxABB*
47 simpr φxABxAB
48 iooltub A*B*xABx<B
49 45 46 47 48 syl3anc φxABx<B
50 49 adantr φxABA+B2<xx<B
51 39 40 43 44 50 eliood φxABA+B2<xxA+B2B
52 1 adantr φxA+B2BA
53 2 adantr φxA+B2BB
54 4 adantr φxA+B2BF:AB
55 5 adantr φxA+B2BdomF=AB
56 6 adantr φxA+B2BK
57 2fveq3 x=yFx=Fy
58 57 breq1d x=yFxKFyK
59 58 cbvralvw xABFxKyABFyK
60 7 59 sylib φyABFyK
61 60 adantr φxA+B2ByABFyK
62 22 adantr φxA+B2BA+B2AB
63 simpr φxA+B2BxA+B2B
64 52 53 54 55 56 61 62 63 dvbdfbdioolem1 φxA+B2BFxFA+B2KxA+B2FxFA+B2KBA
65 64 simprd φxA+B2BFxFA+B2KBA
66 37 51 65 syl2anc φxABA+B2<xFxFA+B2KBA
67 fveq2 A+B2=xFA+B2=Fx
68 67 eqcomd A+B2=xFx=FA+B2
69 68 adantl φA+B2=xFx=FA+B2
70 24 adantr φA+B2=xFA+B2
71 69 70 eqeltrd φA+B2=xFx
72 71 69 subeq0bd φA+B2=xFxFA+B2=0
73 72 abs00bd φA+B2=xFxFA+B2=0
74 6 adantr φA+B2=xK
75 2 adantr φA+B2=xB
76 1 adantr φA+B2=xA
77 75 76 resubcld φA+B2=xBA
78 0red φ0
79 ioossre AB
80 dvfre F:ABABF:domF
81 4 79 80 sylancl φF:domF
82 22 5 eleqtrrd φA+B2domF
83 81 82 ffvelcdmd φFA+B2
84 83 recnd φFA+B2
85 84 abscld φFA+B2
86 84 absge0d φ0FA+B2
87 2fveq3 x=A+B2Fx=FA+B2
88 87 breq1d x=A+B2FxKFA+B2K
89 88 rspccva xABFxKA+B2ABFA+B2K
90 7 22 89 syl2anc φFA+B2K
91 78 85 6 86 90 letrd φ0K
92 91 adantr φA+B2=x0K
93 2 1 resubcld φBA
94 1 2 posdifd φA<B0<BA
95 3 94 mpbid φ0<BA
96 78 93 95 ltled φ0BA
97 96 adantr φA+B2=x0BA
98 74 77 92 97 mulge0d φA+B2=x0KBA
99 73 98 eqbrtrd φA+B2=xFxFA+B2KBA
100 99 ad4ant14 φxAB¬A+B2<xA+B2=xFxFA+B2KBA
101 simpll φxAB¬A+B2<x¬A+B2=xφxAB
102 42 ad2antrr φxAB¬A+B2<x¬A+B2=xx
103 15 ad3antrrr φxAB¬A+B2<x¬A+B2=xA+B2
104 42 adantr φxAB¬A+B2<xx
105 15 ad2antrr φxAB¬A+B2<xA+B2
106 simpr φxAB¬A+B2<x¬A+B2<x
107 104 105 106 nltled φxAB¬A+B2<xxA+B2
108 107 adantr φxAB¬A+B2<x¬A+B2=xxA+B2
109 neqne ¬A+B2=xA+B2x
110 109 adantl φxAB¬A+B2<x¬A+B2=xA+B2x
111 102 103 108 110 leneltd φxAB¬A+B2<x¬A+B2=xx<A+B2
112 10 33 abssubd φxABFxFA+B2=FA+B2Fx
113 112 adantr φxABx<A+B2FxFA+B2=FA+B2Fx
114 1 ad2antrr φxABx<A+B2A
115 2 ad2antrr φxABx<A+B2B
116 4 ad2antrr φxABx<A+B2F:AB
117 5 ad2antrr φxABx<A+B2domF=AB
118 6 ad2antrr φxABx<A+B2K
119 60 ad2antrr φxABx<A+B2yABFyK
120 47 adantr φxABx<A+B2xAB
121 41 rexrd xABx*
122 121 ad2antlr φxABx<A+B2x*
123 13 ad2antrr φxABx<A+B2B*
124 15 ad2antrr φxABx<A+B2A+B2
125 simpr φxABx<A+B2x<A+B2
126 21 ad2antrr φxABx<A+B2A+B2<B
127 122 123 124 125 126 eliood φxABx<A+B2A+B2xB
128 114 115 116 117 118 119 120 127 dvbdfbdioolem1 φxABx<A+B2FA+B2FxKA+B2xFA+B2FxKBA
129 128 simprd φxABx<A+B2FA+B2FxKBA
130 113 129 eqbrtrd φxABx<A+B2FxFA+B2KBA
131 101 111 130 syl2anc φxAB¬A+B2<x¬A+B2=xFxFA+B2KBA
132 100 131 pm2.61dan φxAB¬A+B2<xFxFA+B2KBA
133 66 132 pm2.61dan φxABFxFA+B2KBA
134 27 35 32 36 133 letrd φxABFxFA+B2KBA
135 27 32 26 134 leadd1dd φxABFx-FA+B2+FA+B2KBA+FA+B2
136 11 recnd φxABFx
137 26 recnd φxABFA+B2
138 136 137 npcand φxABFx-FA+B2+FA+B2=Fx
139 138 eqcomd φxABFx=Fx-FA+B2+FA+B2
140 25 recnd φFA+B2
141 6 recnd φK
142 2 recnd φB
143 1 recnd φA
144 142 143 subcld φBA
145 141 144 mulcld φKBA
146 140 145 addcomd φFA+B2+KBA=KBA+FA+B2
147 8 146 eqtrid φM=KBA+FA+B2
148 147 adantr φxABM=KBA+FA+B2
149 135 139 148 3brtr4d φxABFxM
150 149 ralrimiva φxABFxM