| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvbdfbdioolem2.a |
|
| 2 |
|
dvbdfbdioolem2.b |
|
| 3 |
|
dvbdfbdioolem2.altb |
|
| 4 |
|
dvbdfbdioolem2.f |
|
| 5 |
|
dvbdfbdioolem2.dmdv |
|
| 6 |
|
dvbdfbdioolem2.k |
|
| 7 |
|
dvbdfbdioolem2.dvbd |
|
| 8 |
|
dvbdfbdioolem2.m |
|
| 9 |
4
|
ffvelcdmda |
|
| 10 |
9
|
recnd |
|
| 11 |
10
|
abscld |
|
| 12 |
1
|
rexrd |
|
| 13 |
2
|
rexrd |
|
| 14 |
1 2
|
readdcld |
|
| 15 |
14
|
rehalfcld |
|
| 16 |
|
avglt1 |
|
| 17 |
1 2 16
|
syl2anc |
|
| 18 |
3 17
|
mpbid |
|
| 19 |
|
avglt2 |
|
| 20 |
1 2 19
|
syl2anc |
|
| 21 |
3 20
|
mpbid |
|
| 22 |
12 13 15 18 21
|
eliood |
|
| 23 |
4 22
|
ffvelcdmd |
|
| 24 |
23
|
recnd |
|
| 25 |
24
|
abscld |
|
| 26 |
25
|
adantr |
|
| 27 |
11 26
|
resubcld |
|
| 28 |
6
|
adantr |
|
| 29 |
2
|
adantr |
|
| 30 |
1
|
adantr |
|
| 31 |
29 30
|
resubcld |
|
| 32 |
28 31
|
remulcld |
|
| 33 |
24
|
adantr |
|
| 34 |
10 33
|
subcld |
|
| 35 |
34
|
abscld |
|
| 36 |
10 33
|
abs2difd |
|
| 37 |
|
simpll |
|
| 38 |
15
|
rexrd |
|
| 39 |
38
|
ad2antrr |
|
| 40 |
13
|
ad2antrr |
|
| 41 |
|
elioore |
|
| 42 |
41
|
adantl |
|
| 43 |
42
|
adantr |
|
| 44 |
|
simpr |
|
| 45 |
12
|
adantr |
|
| 46 |
13
|
adantr |
|
| 47 |
|
simpr |
|
| 48 |
|
iooltub |
|
| 49 |
45 46 47 48
|
syl3anc |
|
| 50 |
49
|
adantr |
|
| 51 |
39 40 43 44 50
|
eliood |
|
| 52 |
1
|
adantr |
|
| 53 |
2
|
adantr |
|
| 54 |
4
|
adantr |
|
| 55 |
5
|
adantr |
|
| 56 |
6
|
adantr |
|
| 57 |
|
2fveq3 |
|
| 58 |
57
|
breq1d |
|
| 59 |
58
|
cbvralvw |
|
| 60 |
7 59
|
sylib |
|
| 61 |
60
|
adantr |
|
| 62 |
22
|
adantr |
|
| 63 |
|
simpr |
|
| 64 |
52 53 54 55 56 61 62 63
|
dvbdfbdioolem1 |
|
| 65 |
64
|
simprd |
|
| 66 |
37 51 65
|
syl2anc |
|
| 67 |
|
fveq2 |
|
| 68 |
67
|
eqcomd |
|
| 69 |
68
|
adantl |
|
| 70 |
24
|
adantr |
|
| 71 |
69 70
|
eqeltrd |
|
| 72 |
71 69
|
subeq0bd |
|
| 73 |
72
|
abs00bd |
|
| 74 |
6
|
adantr |
|
| 75 |
2
|
adantr |
|
| 76 |
1
|
adantr |
|
| 77 |
75 76
|
resubcld |
|
| 78 |
|
0red |
|
| 79 |
|
ioossre |
|
| 80 |
|
dvfre |
|
| 81 |
4 79 80
|
sylancl |
|
| 82 |
22 5
|
eleqtrrd |
|
| 83 |
81 82
|
ffvelcdmd |
|
| 84 |
83
|
recnd |
|
| 85 |
84
|
abscld |
|
| 86 |
84
|
absge0d |
|
| 87 |
|
2fveq3 |
|
| 88 |
87
|
breq1d |
|
| 89 |
88
|
rspccva |
|
| 90 |
7 22 89
|
syl2anc |
|
| 91 |
78 85 6 86 90
|
letrd |
|
| 92 |
91
|
adantr |
|
| 93 |
2 1
|
resubcld |
|
| 94 |
1 2
|
posdifd |
|
| 95 |
3 94
|
mpbid |
|
| 96 |
78 93 95
|
ltled |
|
| 97 |
96
|
adantr |
|
| 98 |
74 77 92 97
|
mulge0d |
|
| 99 |
73 98
|
eqbrtrd |
|
| 100 |
99
|
ad4ant14 |
|
| 101 |
|
simpll |
|
| 102 |
42
|
ad2antrr |
|
| 103 |
15
|
ad3antrrr |
|
| 104 |
42
|
adantr |
|
| 105 |
15
|
ad2antrr |
|
| 106 |
|
simpr |
|
| 107 |
104 105 106
|
nltled |
|
| 108 |
107
|
adantr |
|
| 109 |
|
neqne |
|
| 110 |
109
|
adantl |
|
| 111 |
102 103 108 110
|
leneltd |
|
| 112 |
10 33
|
abssubd |
|
| 113 |
112
|
adantr |
|
| 114 |
1
|
ad2antrr |
|
| 115 |
2
|
ad2antrr |
|
| 116 |
4
|
ad2antrr |
|
| 117 |
5
|
ad2antrr |
|
| 118 |
6
|
ad2antrr |
|
| 119 |
60
|
ad2antrr |
|
| 120 |
47
|
adantr |
|
| 121 |
41
|
rexrd |
|
| 122 |
121
|
ad2antlr |
|
| 123 |
13
|
ad2antrr |
|
| 124 |
15
|
ad2antrr |
|
| 125 |
|
simpr |
|
| 126 |
21
|
ad2antrr |
|
| 127 |
122 123 124 125 126
|
eliood |
|
| 128 |
114 115 116 117 118 119 120 127
|
dvbdfbdioolem1 |
|
| 129 |
128
|
simprd |
|
| 130 |
113 129
|
eqbrtrd |
|
| 131 |
101 111 130
|
syl2anc |
|
| 132 |
100 131
|
pm2.61dan |
|
| 133 |
66 132
|
pm2.61dan |
|
| 134 |
27 35 32 36 133
|
letrd |
|
| 135 |
27 32 26 134
|
leadd1dd |
|
| 136 |
11
|
recnd |
|
| 137 |
26
|
recnd |
|
| 138 |
136 137
|
npcand |
|
| 139 |
138
|
eqcomd |
|
| 140 |
25
|
recnd |
|
| 141 |
6
|
recnd |
|
| 142 |
2
|
recnd |
|
| 143 |
1
|
recnd |
|
| 144 |
142 143
|
subcld |
|
| 145 |
141 144
|
mulcld |
|
| 146 |
140 145
|
addcomd |
|
| 147 |
8 146
|
eqtrid |
|
| 148 |
147
|
adantr |
|
| 149 |
135 139 148
|
3brtr4d |
|
| 150 |
149
|
ralrimiva |
|