Metamath Proof Explorer


Theorem dvdivf

Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvdivf.s φ S
dvdivf.f φ F : X
dvdivf.g φ G : X 0
dvdivf.fdv φ dom F S = X
dvdivf.gdv φ dom G S = X
Assertion dvdivf φ S D F ÷ f G = F S × f G f G S × f F ÷ f G × f G

Proof

Step Hyp Ref Expression
1 dvdivf.s φ S
2 dvdivf.f φ F : X
3 dvdivf.g φ G : X 0
4 dvdivf.fdv φ dom F S = X
5 dvdivf.gdv φ dom G S = X
6 2 ffvelrnda φ x X F x
7 dvfg S F S : dom F S
8 1 7 syl φ F S : dom F S
9 4 feq2d φ F S : dom F S F S : X
10 8 9 mpbid φ F S : X
11 10 ffvelrnda φ x X F S x
12 2 feqmptd φ F = x X F x
13 12 oveq2d φ S D F = dx X F x dS x
14 10 feqmptd φ S D F = x X F S x
15 13 14 eqtr3d φ dx X F x dS x = x X F S x
16 3 ffvelrnda φ x X G x 0
17 dvfg S G S : dom G S
18 1 17 syl φ G S : dom G S
19 5 feq2d φ G S : dom G S G S : X
20 18 19 mpbid φ G S : X
21 20 ffvelrnda φ x X G S x
22 3 feqmptd φ G = x X G x
23 22 oveq2d φ S D G = dx X G x dS x
24 20 feqmptd φ S D G = x X G S x
25 23 24 eqtr3d φ dx X G x dS x = x X G S x
26 1 6 11 15 16 21 25 dvmptdiv φ dx X F x G x dS x = x X F S x G x G S x F x G x 2
27 ovex S D F V
28 27 dmex dom F S V
29 4 28 eqeltrrdi φ X V
30 29 6 16 12 22 offval2 φ F ÷ f G = x X F x G x
31 30 oveq2d φ S D F ÷ f G = dx X F x G x dS x
32 ovexd φ x X F S x G x G S x F x V
33 16 eldifad φ x X G x
34 33 sqcld φ x X G x 2
35 11 33 mulcld φ x X F S x G x
36 21 6 mulcld φ x X G S x F x
37 29 11 33 14 22 offval2 φ F S × f G = x X F S x G x
38 29 21 6 24 12 offval2 φ G S × f F = x X G S x F x
39 29 35 36 37 38 offval2 φ F S × f G f G S × f F = x X F S x G x G S x F x
40 29 16 16 22 22 offval2 φ G × f G = x X G x G x
41 33 sqvald φ x X G x 2 = G x G x
42 41 mpteq2dva φ x X G x 2 = x X G x G x
43 40 42 eqtr4d φ G × f G = x X G x 2
44 29 32 34 39 43 offval2 φ F S × f G f G S × f F ÷ f G × f G = x X F S x G x G S x F x G x 2
45 26 31 44 3eqtr4d φ S D F ÷ f G = F S × f G f G S × f F ÷ f G × f G