Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdivf.s | |
|
dvdivf.f | |
||
dvdivf.g | |
||
dvdivf.fdv | |
||
dvdivf.gdv | |
||
Assertion | dvdivf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdivf.s | |
|
2 | dvdivf.f | |
|
3 | dvdivf.g | |
|
4 | dvdivf.fdv | |
|
5 | dvdivf.gdv | |
|
6 | 2 | ffvelcdmda | |
7 | dvfg | |
|
8 | 1 7 | syl | |
9 | 4 | feq2d | |
10 | 8 9 | mpbid | |
11 | 10 | ffvelcdmda | |
12 | 2 | feqmptd | |
13 | 12 | oveq2d | |
14 | 10 | feqmptd | |
15 | 13 14 | eqtr3d | |
16 | 3 | ffvelcdmda | |
17 | dvfg | |
|
18 | 1 17 | syl | |
19 | 5 | feq2d | |
20 | 18 19 | mpbid | |
21 | 20 | ffvelcdmda | |
22 | 3 | feqmptd | |
23 | 22 | oveq2d | |
24 | 20 | feqmptd | |
25 | 23 24 | eqtr3d | |
26 | 1 6 11 15 16 21 25 | dvmptdiv | |
27 | ovex | |
|
28 | 27 | dmex | |
29 | 4 28 | eqeltrrdi | |
30 | 29 6 16 12 22 | offval2 | |
31 | 30 | oveq2d | |
32 | ovexd | |
|
33 | 16 | eldifad | |
34 | 33 | sqcld | |
35 | 11 33 | mulcld | |
36 | 21 6 | mulcld | |
37 | 29 11 33 14 22 | offval2 | |
38 | 29 21 6 24 12 | offval2 | |
39 | 29 35 36 37 38 | offval2 | |
40 | 29 16 16 22 22 | offval2 | |
41 | 33 | sqvald | |
42 | 41 | mpteq2dva | |
43 | 40 42 | eqtr4d | |
44 | 29 32 34 39 43 | offval2 | |
45 | 26 31 44 | 3eqtr4d | |