Metamath Proof Explorer


Theorem dvdivf

Description: The quotient rule for everywhere-differentiable functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvdivf.s φS
dvdivf.f φF:X
dvdivf.g φG:X0
dvdivf.fdv φdomFS=X
dvdivf.gdv φdomGS=X
Assertion dvdivf φSDF÷fG=FS×fGfGS×fF÷fG×fG

Proof

Step Hyp Ref Expression
1 dvdivf.s φS
2 dvdivf.f φF:X
3 dvdivf.g φG:X0
4 dvdivf.fdv φdomFS=X
5 dvdivf.gdv φdomGS=X
6 2 ffvelcdmda φxXFx
7 dvfg SFS:domFS
8 1 7 syl φFS:domFS
9 4 feq2d φFS:domFSFS:X
10 8 9 mpbid φFS:X
11 10 ffvelcdmda φxXFSx
12 2 feqmptd φF=xXFx
13 12 oveq2d φSDF=dxXFxdSx
14 10 feqmptd φSDF=xXFSx
15 13 14 eqtr3d φdxXFxdSx=xXFSx
16 3 ffvelcdmda φxXGx0
17 dvfg SGS:domGS
18 1 17 syl φGS:domGS
19 5 feq2d φGS:domGSGS:X
20 18 19 mpbid φGS:X
21 20 ffvelcdmda φxXGSx
22 3 feqmptd φG=xXGx
23 22 oveq2d φSDG=dxXGxdSx
24 20 feqmptd φSDG=xXGSx
25 23 24 eqtr3d φdxXGxdSx=xXGSx
26 1 6 11 15 16 21 25 dvmptdiv φdxXFxGxdSx=xXFSxGxGSxFxGx2
27 ovex SDFV
28 27 dmex domFSV
29 4 28 eqeltrrdi φXV
30 29 6 16 12 22 offval2 φF÷fG=xXFxGx
31 30 oveq2d φSDF÷fG=dxXFxGxdSx
32 ovexd φxXFSxGxGSxFxV
33 16 eldifad φxXGx
34 33 sqcld φxXGx2
35 11 33 mulcld φxXFSxGx
36 21 6 mulcld φxXGSxFx
37 29 11 33 14 22 offval2 φFS×fG=xXFSxGx
38 29 21 6 24 12 offval2 φGS×fF=xXGSxFx
39 29 35 36 37 38 offval2 φFS×fGfGS×fF=xXFSxGxGSxFx
40 29 16 16 22 22 offval2 φG×fG=xXGxGx
41 33 sqvald φxXGx2=GxGx
42 41 mpteq2dva φxXGx2=xXGxGx
43 40 42 eqtr4d φG×fG=xXGx2
44 29 32 34 39 43 offval2 φFS×fGfGS×fF÷fG×fG=xXFSxGxGSxFxGx2
45 26 31 44 3eqtr4d φSDF÷fG=FS×fGfGS×fF÷fG×fG