Metamath Proof Explorer


Theorem dvmptdiv

Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses dvmptdiv.s φ S
dvmptdiv.a φ x X A
dvmptdiv.b φ x X B V
dvmptdiv.da φ dx X A dS x = x X B
dvmptdiv.c φ x X C 0
dvmptdiv.d φ x X D
dvmptdiv.dc φ dx X C dS x = x X D
Assertion dvmptdiv φ dx X A C dS x = x X B C D A C 2

Proof

Step Hyp Ref Expression
1 dvmptdiv.s φ S
2 dvmptdiv.a φ x X A
3 dvmptdiv.b φ x X B V
4 dvmptdiv.da φ dx X A dS x = x X B
5 dvmptdiv.c φ x X C 0
6 dvmptdiv.d φ x X D
7 dvmptdiv.dc φ dx X C dS x = x X D
8 5 eldifad φ x X C
9 eldifsn C 0 C C 0
10 5 9 sylib φ x X C C 0
11 10 simprd φ x X C 0
12 2 8 11 divrecd φ x X A C = A 1 C
13 12 mpteq2dva φ x X A C = x X A 1 C
14 13 oveq2d φ dx X A C dS x = dx X A 1 C dS x
15 8 11 reccld φ x X 1 C
16 1cnd φ x X 1
17 16 6 mulcld φ x X 1 D
18 8 sqcld φ x X C 2
19 11 neneqd φ x X ¬ C = 0
20 sqeq0 C C 2 = 0 C = 0
21 8 20 syl φ x X C 2 = 0 C = 0
22 19 21 mtbird φ x X ¬ C 2 = 0
23 22 neqned φ x X C 2 0
24 17 18 23 divcld φ x X 1 D C 2
25 24 negcld φ x X 1 D C 2
26 1cnd φ 1
27 1 26 5 6 7 dvrecg φ dx X 1 C dS x = x X 1 D C 2
28 1 2 3 4 15 25 27 dvmptmul φ dx X A 1 C dS x = x X B 1 C + 1 D C 2 A
29 1 2 3 4 dvmptcl φ x X B
30 29 8 mulcld φ x X B C
31 30 18 23 divcld φ x X B C C 2
32 6 2 mulcld φ x X D A
33 32 18 23 divcld φ x X D A C 2
34 31 33 negsubd φ x X B C C 2 + D A C 2 = B C C 2 D A C 2
35 29 16 8 11 div12d φ x X B 1 C = 1 B C
36 29 8 11 divcld φ x X B C
37 36 mulid2d φ x X 1 B C = B C
38 8 sqvald φ x X C 2 = C C
39 38 oveq2d φ x X B C C 2 = B C C C
40 29 8 8 11 11 divcan5rd φ x X B C C C = B C
41 39 40 eqtr2d φ x X B C = B C C 2
42 35 37 41 3eqtrd φ x X B 1 C = B C C 2
43 6 mulid2d φ x X 1 D = D
44 43 oveq1d φ x X 1 D C 2 = D C 2
45 44 negeqd φ x X 1 D C 2 = D C 2
46 45 oveq1d φ x X 1 D C 2 A = D C 2 A
47 6 18 23 divcld φ x X D C 2
48 47 2 mulneg1d φ x X D C 2 A = D C 2 A
49 6 2 18 23 div23d φ x X D A C 2 = D C 2 A
50 49 eqcomd φ x X D C 2 A = D A C 2
51 50 negeqd φ x X D C 2 A = D A C 2
52 46 48 51 3eqtrd φ x X 1 D C 2 A = D A C 2
53 42 52 oveq12d φ x X B 1 C + 1 D C 2 A = B C C 2 + D A C 2
54 30 32 18 23 divsubdird φ x X B C D A C 2 = B C C 2 D A C 2
55 34 53 54 3eqtr4d φ x X B 1 C + 1 D C 2 A = B C D A C 2
56 55 mpteq2dva φ x X B 1 C + 1 D C 2 A = x X B C D A C 2
57 14 28 56 3eqtrd φ dx X A C dS x = x X B C D A C 2