Description: If two elements X and Y of a ring R are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvdsrspss.b | |
|
dvdsrspss.k | |
||
dvdsrspss.d | |
||
dvdsrspss.x | |
||
dvdsrspss.y | |
||
dvdsruassoi.1 | |
||
dvdsruassoi.2 | |
||
dvdsruassoi.r | |
||
dvdsruassoi.3 | |
||
dvdsruassoi.4 | |
||
Assertion | dvdsruassoi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | |
|
2 | dvdsrspss.k | |
|
3 | dvdsrspss.d | |
|
4 | dvdsrspss.x | |
|
5 | dvdsrspss.y | |
|
6 | dvdsruassoi.1 | |
|
7 | dvdsruassoi.2 | |
|
8 | dvdsruassoi.r | |
|
9 | dvdsruassoi.3 | |
|
10 | dvdsruassoi.4 | |
|
11 | 1 6 | unitss | |
12 | 11 9 | sselid | |
13 | oveq1 | |
|
14 | 13 | eqeq1d | |
15 | 14 | adantl | |
16 | 12 15 10 | rspcedvd | |
17 | eqid | |
|
18 | 6 17 1 | ringinvcl | |
19 | 8 9 18 | syl2anc | |
20 | oveq1 | |
|
21 | 20 | eqeq1d | |
22 | 21 | adantl | |
23 | 1 7 8 19 12 4 | ringassd | |
24 | eqid | |
|
25 | 6 17 7 24 | unitlinv | |
26 | 8 9 25 | syl2anc | |
27 | 26 | oveq1d | |
28 | 1 7 24 8 4 | ringlidmd | |
29 | 27 28 | eqtrd | |
30 | 10 | oveq2d | |
31 | 23 29 30 | 3eqtr3rd | |
32 | 19 22 31 | rspcedvd | |
33 | 1 3 7 | dvdsr | |
34 | 4 | biantrurd | |
35 | 33 34 | bitr4id | |
36 | 1 3 7 | dvdsr | |
37 | 5 | biantrurd | |
38 | 36 37 | bitr4id | |
39 | 35 38 | anbi12d | |
40 | 16 32 39 | mpbir2and | |