Metamath Proof Explorer


Theorem dvdsruassoi

Description: If two elements X and Y of a ring R are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses dvdsrspss.b B=BaseR
dvdsrspss.k K=RSpanR
dvdsrspss.d ˙=rR
dvdsrspss.x φXB
dvdsrspss.y φYB
dvdsruassoi.1 U=UnitR
dvdsruassoi.2 ·˙=R
dvdsruassoi.r φRRing
dvdsruassoi.3 φVU
dvdsruassoi.4 φV·˙X=Y
Assertion dvdsruassoi φX˙YY˙X

Proof

Step Hyp Ref Expression
1 dvdsrspss.b B=BaseR
2 dvdsrspss.k K=RSpanR
3 dvdsrspss.d ˙=rR
4 dvdsrspss.x φXB
5 dvdsrspss.y φYB
6 dvdsruassoi.1 U=UnitR
7 dvdsruassoi.2 ·˙=R
8 dvdsruassoi.r φRRing
9 dvdsruassoi.3 φVU
10 dvdsruassoi.4 φV·˙X=Y
11 1 6 unitss UB
12 11 9 sselid φVB
13 oveq1 t=Vt·˙X=V·˙X
14 13 eqeq1d t=Vt·˙X=YV·˙X=Y
15 14 adantl φt=Vt·˙X=YV·˙X=Y
16 12 15 10 rspcedvd φtBt·˙X=Y
17 eqid invrR=invrR
18 6 17 1 ringinvcl RRingVUinvrRVB
19 8 9 18 syl2anc φinvrRVB
20 oveq1 s=invrRVs·˙Y=invrRV·˙Y
21 20 eqeq1d s=invrRVs·˙Y=XinvrRV·˙Y=X
22 21 adantl φs=invrRVs·˙Y=XinvrRV·˙Y=X
23 1 7 8 19 12 4 ringassd φinvrRV·˙V·˙X=invrRV·˙V·˙X
24 eqid 1R=1R
25 6 17 7 24 unitlinv RRingVUinvrRV·˙V=1R
26 8 9 25 syl2anc φinvrRV·˙V=1R
27 26 oveq1d φinvrRV·˙V·˙X=1R·˙X
28 1 7 24 8 4 ringlidmd φ1R·˙X=X
29 27 28 eqtrd φinvrRV·˙V·˙X=X
30 10 oveq2d φinvrRV·˙V·˙X=invrRV·˙Y
31 23 29 30 3eqtr3rd φinvrRV·˙Y=X
32 19 22 31 rspcedvd φsBs·˙Y=X
33 1 3 7 dvdsr X˙YXBtBt·˙X=Y
34 4 biantrurd φtBt·˙X=YXBtBt·˙X=Y
35 33 34 bitr4id φX˙YtBt·˙X=Y
36 1 3 7 dvdsr Y˙XYBsBs·˙Y=X
37 5 biantrurd φsBs·˙Y=XYBsBs·˙Y=X
38 36 37 bitr4id φY˙XsBs·˙Y=X
39 35 38 anbi12d φX˙YY˙XtBt·˙X=YsBs·˙Y=X
40 16 32 39 mpbir2and φX˙YY˙X