Metamath Proof Explorer


Theorem dvh3dim2

Description: There is a vector that is outside of 2 spans with a common vector. (Contributed by NM, 13-May-2015)

Ref Expression
Hypotheses dvh3dim.h H=LHypK
dvh3dim.u U=DVecHKW
dvh3dim.v V=BaseU
dvh3dim.n N=LSpanU
dvh3dim.k φKHLWH
dvh3dim.x φXV
dvh3dim.y φYV
dvh3dim2.z φZV
Assertion dvh3dim2 φzV¬zNXY¬zNXZ

Proof

Step Hyp Ref Expression
1 dvh3dim.h H=LHypK
2 dvh3dim.u U=DVecHKW
3 dvh3dim.v V=BaseU
4 dvh3dim.n N=LSpanU
5 dvh3dim.k φKHLWH
6 dvh3dim.x φXV
7 dvh3dim.y φYV
8 dvh3dim2.z φZV
9 1 2 3 4 5 6 8 dvh3dim φzV¬zNXZ
10 9 adantr φYNXZzV¬zNXZ
11 eqid LSubSpU=LSubSpU
12 1 2 5 dvhlmod φULMod
13 12 ad2antrr φYNXZzVULMod
14 3 11 4 12 6 8 lspprcl φNXZLSubSpU
15 14 ad2antrr φYNXZzVNXZLSubSpU
16 3 4 12 6 8 lspprid1 φXNXZ
17 16 ad2antrr φYNXZzVXNXZ
18 simplr φYNXZzVYNXZ
19 11 4 13 15 17 18 lspprss φYNXZzVNXYNXZ
20 19 ssneld φYNXZzV¬zNXZ¬zNXY
21 20 ancrd φYNXZzV¬zNXZ¬zNXY¬zNXZ
22 21 reximdva φYNXZzV¬zNXZzV¬zNXY¬zNXZ
23 10 22 mpd φYNXZzV¬zNXY¬zNXZ
24 1 2 3 4 5 6 7 dvh3dim φwV¬wNXY
25 24 adantr φ¬YNXZwV¬wNXY
26 simpl1l φ¬YNXZwV¬wNXYwNXZφ
27 26 12 syl φ¬YNXZwV¬wNXYwNXZULMod
28 simpl2 φ¬YNXZwV¬wNXYwNXZwV
29 26 7 syl φ¬YNXZwV¬wNXYwNXZYV
30 eqid +U=+U
31 3 30 lmodvacl ULModwVYVw+UYV
32 27 28 29 31 syl3anc φ¬YNXZwV¬wNXYwNXZw+UYV
33 3 11 4 12 6 7 lspprcl φNXYLSubSpU
34 26 33 syl φ¬YNXZwV¬wNXYwNXZNXYLSubSpU
35 3 4 12 6 7 lspprid2 φYNXY
36 26 35 syl φ¬YNXZwV¬wNXYwNXZYNXY
37 simpl3 φ¬YNXZwV¬wNXYwNXZ¬wNXY
38 3 30 11 27 34 36 28 37 lssvancl2 φ¬YNXZwV¬wNXYwNXZ¬w+UYNXY
39 26 14 syl φ¬YNXZwV¬wNXYwNXZNXZLSubSpU
40 simpr φ¬YNXZwV¬wNXYwNXZwNXZ
41 simpl1r φ¬YNXZwV¬wNXYwNXZ¬YNXZ
42 3 30 11 27 39 40 29 41 lssvancl1 φ¬YNXZwV¬wNXYwNXZ¬w+UYNXZ
43 eleq1 z=w+UYzNXYw+UYNXY
44 43 notbid z=w+UY¬zNXY¬w+UYNXY
45 eleq1 z=w+UYzNXZw+UYNXZ
46 45 notbid z=w+UY¬zNXZ¬w+UYNXZ
47 44 46 anbi12d z=w+UY¬zNXY¬zNXZ¬w+UYNXY¬w+UYNXZ
48 47 rspcev w+UYV¬w+UYNXY¬w+UYNXZzV¬zNXY¬zNXZ
49 32 38 42 48 syl12anc φ¬YNXZwV¬wNXYwNXZzV¬zNXY¬zNXZ
50 simpl2 φ¬YNXZwV¬wNXY¬wNXZwV
51 simpl3 φ¬YNXZwV¬wNXY¬wNXZ¬wNXY
52 simpr φ¬YNXZwV¬wNXY¬wNXZ¬wNXZ
53 eleq1 z=wzNXYwNXY
54 53 notbid z=w¬zNXY¬wNXY
55 eleq1 z=wzNXZwNXZ
56 55 notbid z=w¬zNXZ¬wNXZ
57 54 56 anbi12d z=w¬zNXY¬zNXZ¬wNXY¬wNXZ
58 57 rspcev wV¬wNXY¬wNXZzV¬zNXY¬zNXZ
59 50 51 52 58 syl12anc φ¬YNXZwV¬wNXY¬wNXZzV¬zNXY¬zNXZ
60 49 59 pm2.61dan φ¬YNXZwV¬wNXYzV¬zNXY¬zNXZ
61 60 rexlimdv3a φ¬YNXZwV¬wNXYzV¬zNXY¬zNXZ
62 25 61 mpd φ¬YNXZzV¬zNXY¬zNXZ
63 23 62 pm2.61dan φzV¬zNXY¬zNXZ