Metamath Proof Explorer


Theorem dvh3dimatN

Description: There is an atom that is outside the subspace sum of 2 others. (Contributed by NM, 25-Apr-2015) (New usage is discouraged.)

Ref Expression
Hypotheses dvh4dimat.h H = LHyp K
dvh4dimat.u U = DVecH K W
dvh3dimat.s ˙ = LSSum U
dvh3dimat.a A = LSAtoms U
dvh3dimat.k φ K HL W H
dvh3dimat.p φ P A
dvh3dimat.q φ Q A
Assertion dvh3dimatN φ s A ¬ s P ˙ Q

Proof

Step Hyp Ref Expression
1 dvh4dimat.h H = LHyp K
2 dvh4dimat.u U = DVecH K W
3 dvh3dimat.s ˙ = LSSum U
4 dvh3dimat.a A = LSAtoms U
5 dvh3dimat.k φ K HL W H
6 dvh3dimat.p φ P A
7 dvh3dimat.q φ Q A
8 1 2 3 4 5 6 6 7 dvh4dimat φ s A ¬ s P ˙ P ˙ Q
9 1 2 5 dvhlmod φ U LMod
10 eqid LSubSp U = LSubSp U
11 10 4 9 6 lsatlssel φ P LSubSp U
12 10 lsssubg U LMod P LSubSp U P SubGrp U
13 9 11 12 syl2anc φ P SubGrp U
14 3 lsmidm P SubGrp U P ˙ P = P
15 13 14 syl φ P ˙ P = P
16 15 oveq1d φ P ˙ P ˙ Q = P ˙ Q
17 16 sseq2d φ s P ˙ P ˙ Q s P ˙ Q
18 17 notbid φ ¬ s P ˙ P ˙ Q ¬ s P ˙ Q
19 18 rexbidv φ s A ¬ s P ˙ P ˙ Q s A ¬ s P ˙ Q
20 8 19 mpbid φ s A ¬ s P ˙ Q