Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvgt0.a | |
|
dvgt0.b | |
||
dvgt0.f | |
||
dvlt0.d | |
||
Assertion | dvlt0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvgt0.a | |
|
2 | dvgt0.b | |
|
3 | dvgt0.f | |
|
4 | dvlt0.d | |
|
5 | gtso | |
|
6 | 1 2 3 4 | dvgt0lem1 | |
7 | eliooord | |
|
8 | 6 7 | syl | |
9 | 8 | simprd | |
10 | cncff | |
|
11 | 3 10 | syl | |
12 | 11 | ad2antrr | |
13 | simplrr | |
|
14 | 12 13 | ffvelcdmd | |
15 | simplrl | |
|
16 | 12 15 | ffvelcdmd | |
17 | 14 16 | resubcld | |
18 | 0red | |
|
19 | iccssre | |
|
20 | 1 2 19 | syl2anc | |
21 | 20 | ad2antrr | |
22 | 21 13 | sseldd | |
23 | 21 15 | sseldd | |
24 | 22 23 | resubcld | |
25 | simpr | |
|
26 | 23 22 | posdifd | |
27 | 25 26 | mpbid | |
28 | ltdivmul | |
|
29 | 17 18 24 27 28 | syl112anc | |
30 | 9 29 | mpbid | |
31 | 24 | recnd | |
32 | 31 | mul01d | |
33 | 30 32 | breqtrd | |
34 | 14 16 18 | ltsubaddd | |
35 | 33 34 | mpbid | |
36 | 16 | recnd | |
37 | 36 | addlidd | |
38 | 35 37 | breqtrd | |
39 | fvex | |
|
40 | fvex | |
|
41 | 39 40 | brcnv | |
42 | 38 41 | sylibr | |
43 | 1 2 3 4 5 42 | dvgt0lem2 | |