Metamath Proof Explorer


Theorem dvlt0

Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015)

Ref Expression
Hypotheses dvgt0.a φA
dvgt0.b φB
dvgt0.f φF:ABcn
dvlt0.d φF:AB−∞0
Assertion dvlt0 φFIsom<,<-1ABranF

Proof

Step Hyp Ref Expression
1 dvgt0.a φA
2 dvgt0.b φB
3 dvgt0.f φF:ABcn
4 dvlt0.d φF:AB−∞0
5 gtso <-1Or
6 1 2 3 4 dvgt0lem1 φxAByABx<yFyFxyx−∞0
7 eliooord FyFxyx−∞0−∞<FyFxyxFyFxyx<0
8 6 7 syl φxAByABx<y−∞<FyFxyxFyFxyx<0
9 8 simprd φxAByABx<yFyFxyx<0
10 cncff F:ABcnF:AB
11 3 10 syl φF:AB
12 11 ad2antrr φxAByABx<yF:AB
13 simplrr φxAByABx<yyAB
14 12 13 ffvelcdmd φxAByABx<yFy
15 simplrl φxAByABx<yxAB
16 12 15 ffvelcdmd φxAByABx<yFx
17 14 16 resubcld φxAByABx<yFyFx
18 0red φxAByABx<y0
19 iccssre ABAB
20 1 2 19 syl2anc φAB
21 20 ad2antrr φxAByABx<yAB
22 21 13 sseldd φxAByABx<yy
23 21 15 sseldd φxAByABx<yx
24 22 23 resubcld φxAByABx<yyx
25 simpr φxAByABx<yx<y
26 23 22 posdifd φxAByABx<yx<y0<yx
27 25 26 mpbid φxAByABx<y0<yx
28 ltdivmul FyFx0yx0<yxFyFxyx<0FyFx<yx0
29 17 18 24 27 28 syl112anc φxAByABx<yFyFxyx<0FyFx<yx0
30 9 29 mpbid φxAByABx<yFyFx<yx0
31 24 recnd φxAByABx<yyx
32 31 mul01d φxAByABx<yyx0=0
33 30 32 breqtrd φxAByABx<yFyFx<0
34 14 16 18 ltsubaddd φxAByABx<yFyFx<0Fy<0+Fx
35 33 34 mpbid φxAByABx<yFy<0+Fx
36 16 recnd φxAByABx<yFx
37 36 addlidd φxAByABx<y0+Fx=Fx
38 35 37 breqtrd φxAByABx<yFy<Fx
39 fvex FxV
40 fvex FyV
41 39 40 brcnv Fx<-1FyFy<Fx
42 38 41 sylibr φxAByABx<yFx<-1Fy
43 1 2 3 4 5 42 dvgt0lem2 φFIsom<,<-1ABranF