Metamath Proof Explorer


Theorem dvntaylp0

Description: The first N derivatives of the Taylor polynomial at B match the derivatives of the function from which it is derived. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses dvntaylp0.s φS
dvntaylp0.f φF:A
dvntaylp0.a φAS
dvntaylp0.m φM0N
dvntaylp0.b φBdomSDnFN
dvntaylp0.t T=NSTaylFB
Assertion dvntaylp0 φDnTMB=SDnFMB

Proof

Step Hyp Ref Expression
1 dvntaylp0.s φS
2 dvntaylp0.f φF:A
3 dvntaylp0.a φAS
4 dvntaylp0.m φM0N
5 dvntaylp0.b φBdomSDnFN
6 dvntaylp0.t T=NSTaylFB
7 elfz3nn0 M0NN0
8 4 7 syl φN0
9 8 nn0cnd φN
10 elfznn0 M0NM0
11 4 10 syl φM0
12 11 nn0cnd φM
13 9 12 npcand φN-M+M=N
14 13 oveq1d φN-M+MSTaylFB=NSTaylFB
15 14 6 eqtr4di φN-M+MSTaylFB=T
16 15 oveq2d φDnN-M+MSTaylFB=DnT
17 16 fveq1d φDnN-M+MSTaylFBM=DnTM
18 fznn0sub M0NNM0
19 4 18 syl φNM0
20 13 fveq2d φSDnFN-M+M=SDnFN
21 20 dmeqd φdomSDnFN-M+M=domSDnFN
22 5 21 eleqtrrd φBdomSDnFN-M+M
23 1 2 3 11 19 22 dvntaylp φDnN-M+MSTaylFBM=NMSTaylSDnFMB
24 17 23 eqtr3d φDnTM=NMSTaylSDnFMB
25 24 fveq1d φDnTMB=NMSTaylSDnFMBB
26 cnex V
27 26 a1i φV
28 elpm2r VSF:AASF𝑝𝑚S
29 27 1 2 3 28 syl22anc φF𝑝𝑚S
30 dvnf SF𝑝𝑚SM0SDnFM:domSDnFM
31 1 29 11 30 syl3anc φSDnFM:domSDnFM
32 dvnbss SF𝑝𝑚SM0domSDnFMdomF
33 1 29 11 32 syl3anc φdomSDnFMdomF
34 2 33 fssdmd φdomSDnFMA
35 34 3 sstrd φdomSDnFMS
36 19 orcd φNM0NM=+∞
37 dvnadd SF𝑝𝑚SM0NM0SDnSDnFMNM=SDnFM+N-M
38 1 29 11 19 37 syl22anc φSDnSDnFMNM=SDnFM+N-M
39 12 9 pncan3d φM+N-M=N
40 39 fveq2d φSDnFM+N-M=SDnFN
41 38 40 eqtrd φSDnSDnFMNM=SDnFN
42 41 dmeqd φdomSDnSDnFMNM=domSDnFN
43 5 42 eleqtrrd φBdomSDnSDnFMNM
44 1 31 35 19 43 taylplem1 φk0NMBdomSDnSDnFMk
45 eqid NMSTaylSDnFMB=NMSTaylSDnFMB
46 1 31 35 36 44 45 tayl0 φBdomNMSTaylSDnFMBNMSTaylSDnFMBB=SDnFMB
47 46 simprd φNMSTaylSDnFMBB=SDnFMB
48 25 47 eqtrd φDnTMB=SDnFMB