Metamath Proof Explorer


Theorem dya2icobrsiga

Description: Dyadic intervals are Borel sets of RR . (Contributed by Thierry Arnoux, 22-Sep-2017) (Revised by Thierry Arnoux, 13-Oct-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
Assertion dya2icobrsiga ranI𝔅

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 ovex x2nx+12nV
4 2 3 elrnmpo dranIxnd=x2nx+12n
5 simpr xnd=x2nx+12nd=x2nx+12n
6 mnfxr −∞*
7 6 a1i xn−∞*
8 simpl xnx
9 8 zred xnx
10 2rp 2+
11 10 a1i xn2+
12 simpr xnn
13 11 12 rpexpcld xn2n+
14 9 13 rerpdivcld xnx2n
15 14 rexrd xnx2n*
16 1red xn1
17 9 16 readdcld xnx+1
18 17 13 rerpdivcld xnx+12n
19 18 rexrd xnx+12n*
20 mnflt x2n−∞<x2n
21 14 20 syl xn−∞<x2n
22 difioo −∞*x2n*x+12n*−∞<x2n−∞x+12n−∞x2n=x2nx+12n
23 7 15 19 21 22 syl31anc xn−∞x+12n−∞x2n=x2nx+12n
24 brsigarn 𝔅sigAlgebra
25 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
26 24 25 ax-mp 𝔅ransigAlgebra
27 retop topGenran.Top
28 iooretop −∞x+12ntopGenran.
29 elsigagen topGenran.Top−∞x+12ntopGenran.−∞x+12n𝛔topGenran.
30 27 28 29 mp2an −∞x+12n𝛔topGenran.
31 df-brsiga 𝔅=𝛔topGenran.
32 30 31 eleqtrri −∞x+12n𝔅
33 iooretop −∞x2ntopGenran.
34 elsigagen topGenran.Top−∞x2ntopGenran.−∞x2n𝛔topGenran.
35 27 33 34 mp2an −∞x2n𝛔topGenran.
36 35 31 eleqtrri −∞x2n𝔅
37 difelsiga 𝔅ransigAlgebra−∞x+12n𝔅−∞x2n𝔅−∞x+12n−∞x2n𝔅
38 26 32 36 37 mp3an −∞x+12n−∞x2n𝔅
39 23 38 eqeltrrdi xnx2nx+12n𝔅
40 39 adantr xnd=x2nx+12nx2nx+12n𝔅
41 5 40 eqeltrd xnd=x2nx+12nd𝔅
42 41 ex xnd=x2nx+12nd𝔅
43 42 rexlimivv xnd=x2nx+12nd𝔅
44 4 43 sylbi dranId𝔅
45 44 ssriv ranI𝔅