Description: Dyadic intervals are Borel sets of RR . (Contributed by Thierry Arnoux, 22-Sep-2017) (Revised by Thierry Arnoux, 13-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
Assertion | dya2icobrsiga | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | ovex | |
|
4 | 2 3 | elrnmpo | |
5 | simpr | |
|
6 | mnfxr | |
|
7 | 6 | a1i | |
8 | simpl | |
|
9 | 8 | zred | |
10 | 2rp | |
|
11 | 10 | a1i | |
12 | simpr | |
|
13 | 11 12 | rpexpcld | |
14 | 9 13 | rerpdivcld | |
15 | 14 | rexrd | |
16 | 1red | |
|
17 | 9 16 | readdcld | |
18 | 17 13 | rerpdivcld | |
19 | 18 | rexrd | |
20 | mnflt | |
|
21 | 14 20 | syl | |
22 | difioo | |
|
23 | 7 15 19 21 22 | syl31anc | |
24 | brsigarn | |
|
25 | elrnsiga | |
|
26 | 24 25 | ax-mp | |
27 | retop | |
|
28 | iooretop | |
|
29 | elsigagen | |
|
30 | 27 28 29 | mp2an | |
31 | df-brsiga | |
|
32 | 30 31 | eleqtrri | |
33 | iooretop | |
|
34 | elsigagen | |
|
35 | 27 33 34 | mp2an | |
36 | 35 31 | eleqtrri | |
37 | difelsiga | |
|
38 | 26 32 36 37 | mp3an | |
39 | 23 38 | eqeltrrdi | |
40 | 39 | adantr | |
41 | 5 40 | eqeltrd | |
42 | 41 | ex | |
43 | 42 | rexlimivv | |
44 | 4 43 | sylbi | |
45 | 44 | ssriv | |