Metamath Proof Explorer


Theorem efcj

Description: The exponential of a complex conjugate. Equation 3 of Gleason p. 308. (Contributed by NM, 29-Apr-2005) (Revised by Mario Carneiro, 28-Apr-2014)

Ref Expression
Assertion efcj AeA=eA

Proof

Step Hyp Ref Expression
1 cjcl AA
2 eqid n0Ann!=n0Ann!
3 2 efcvg Aseq0+n0Ann!eA
4 1 3 syl Aseq0+n0Ann!eA
5 nn0uz 0=0
6 eqid n0Ann!=n0Ann!
7 6 efcvg Aseq0+n0Ann!eA
8 seqex seq0+n0Ann!V
9 8 a1i Aseq0+n0Ann!V
10 0zd A0
11 6 eftval k0n0Ann!k=Akk!
12 11 adantl Ak0n0Ann!k=Akk!
13 eftcl Ak0Akk!
14 12 13 eqeltrd Ak0n0Ann!k
15 5 10 14 serf Aseq0+n0Ann!:0
16 15 ffvelcdmda Aj0seq0+n0Ann!j
17 addcl kmk+m
18 17 adantl Aj0kmk+m
19 simpl Aj0A
20 elfznn0 k0jk0
21 19 20 14 syl2an Aj0k0jn0Ann!k
22 simpr Aj0j0
23 22 5 eleqtrdi Aj0j0
24 cjadd kmk+m=k+m
25 24 adantl Aj0kmk+m=k+m
26 expcl Ak0Ak
27 faccl k0k!
28 27 adantl Ak0k!
29 28 nncnd Ak0k!
30 28 nnne0d Ak0k!0
31 26 29 30 cjdivd Ak0Akk!=Akk!
32 cjexp Ak0Ak=Ak
33 28 nnred Ak0k!
34 33 cjred Ak0k!=k!
35 32 34 oveq12d Ak0Akk!=Akk!
36 31 35 eqtrd Ak0Akk!=Akk!
37 12 fveq2d Ak0n0Ann!k=Akk!
38 2 eftval k0n0Ann!k=Akk!
39 38 adantl Ak0n0Ann!k=Akk!
40 36 37 39 3eqtr4d Ak0n0Ann!k=n0Ann!k
41 19 20 40 syl2an Aj0k0jn0Ann!k=n0Ann!k
42 18 21 23 25 41 seqhomo Aj0seq0+n0Ann!j=seq0+n0Ann!j
43 42 eqcomd Aj0seq0+n0Ann!j=seq0+n0Ann!j
44 5 7 9 10 16 43 climcj Aseq0+n0Ann!eA
45 climuni seq0+n0Ann!eAseq0+n0Ann!eAeA=eA
46 4 44 45 syl2anc AeA=eA