Metamath Proof Explorer


Theorem efgsdm

Description: Elementhood in the domain of S , the set of sequences of extensions starting at an irreducible word. (Contributed by Mario Carneiro, 27-Sep-2015)

Ref Expression
Hypotheses efgval.w W = I Word I × 2 𝑜
efgval.r ˙ = ~ FG I
efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
efgred.d D = W x W ran T x
efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
Assertion efgsdm F dom S F Word W F 0 D i 1 ..^ F F i ran T F i 1

Proof

Step Hyp Ref Expression
1 efgval.w W = I Word I × 2 𝑜
2 efgval.r ˙ = ~ FG I
3 efgval2.m M = y I , z 2 𝑜 y 1 𝑜 z
4 efgval2.t T = v W n 0 v , w I × 2 𝑜 v splice n n ⟨“ w M w ”⟩
5 efgred.d D = W x W ran T x
6 efgred.s S = m t Word W | t 0 D k 1 ..^ t t k ran T t k 1 m m 1
7 fveq1 f = F f 0 = F 0
8 7 eleq1d f = F f 0 D F 0 D
9 fveq2 f = F f = F
10 9 oveq2d f = F 1 ..^ f = 1 ..^ F
11 fveq1 f = F f i = F i
12 fveq1 f = F f i 1 = F i 1
13 12 fveq2d f = F T f i 1 = T F i 1
14 13 rneqd f = F ran T f i 1 = ran T F i 1
15 11 14 eleq12d f = F f i ran T f i 1 F i ran T F i 1
16 10 15 raleqbidv f = F i 1 ..^ f f i ran T f i 1 i 1 ..^ F F i ran T F i 1
17 8 16 anbi12d f = F f 0 D i 1 ..^ f f i ran T f i 1 F 0 D i 1 ..^ F F i ran T F i 1
18 1 2 3 4 5 6 efgsf S : t Word W | t 0 D k 1 ..^ t t k ran T t k 1 W
19 18 fdmi dom S = t Word W | t 0 D k 1 ..^ t t k ran T t k 1
20 fveq1 t = f t 0 = f 0
21 20 eleq1d t = f t 0 D f 0 D
22 fveq2 k = i t k = t i
23 fvoveq1 k = i t k 1 = t i 1
24 23 fveq2d k = i T t k 1 = T t i 1
25 24 rneqd k = i ran T t k 1 = ran T t i 1
26 22 25 eleq12d k = i t k ran T t k 1 t i ran T t i 1
27 26 cbvralvw k 1 ..^ t t k ran T t k 1 i 1 ..^ t t i ran T t i 1
28 fveq2 t = f t = f
29 28 oveq2d t = f 1 ..^ t = 1 ..^ f
30 fveq1 t = f t i = f i
31 fveq1 t = f t i 1 = f i 1
32 31 fveq2d t = f T t i 1 = T f i 1
33 32 rneqd t = f ran T t i 1 = ran T f i 1
34 30 33 eleq12d t = f t i ran T t i 1 f i ran T f i 1
35 29 34 raleqbidv t = f i 1 ..^ t t i ran T t i 1 i 1 ..^ f f i ran T f i 1
36 27 35 syl5bb t = f k 1 ..^ t t k ran T t k 1 i 1 ..^ f f i ran T f i 1
37 21 36 anbi12d t = f t 0 D k 1 ..^ t t k ran T t k 1 f 0 D i 1 ..^ f f i ran T f i 1
38 37 cbvrabv t Word W | t 0 D k 1 ..^ t t k ran T t k 1 = f Word W | f 0 D i 1 ..^ f f i ran T f i 1
39 19 38 eqtri dom S = f Word W | f 0 D i 1 ..^ f f i ran T f i 1
40 17 39 elrab2 F dom S F Word W F 0 D i 1 ..^ F F i ran T F i 1
41 3anass F Word W F 0 D i 1 ..^ F F i ran T F i 1 F Word W F 0 D i 1 ..^ F F i ran T F i 1
42 40 41 bitr4i F dom S F Word W F 0 D i 1 ..^ F F i ran T F i 1