Metamath Proof Explorer


Theorem efifo

Description: The exponential function of an imaginary number maps the reals onto the unit circle. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Hypotheses efifo.1 F=zeiz
efifo.2 C=abs-11
Assertion efifo F:ontoC

Proof

Step Hyp Ref Expression
1 efifo.1 F=zeiz
2 efifo.2 C=abs-11
3 ax-icn i
4 recn zz
5 mulcl iziz
6 3 4 5 sylancr ziz
7 efcl izeiz
8 6 7 syl zeiz
9 absefi zeiz=1
10 absf abs:
11 ffn abs:absFn
12 fniniseg absFneizabs-11eizeiz=1
13 10 11 12 mp2b eizabs-11eizeiz=1
14 8 9 13 sylanbrc zeizabs-11
15 14 2 eleqtrrdi zeizC
16 1 15 fmpti F:C
17 ffn F:CFFn
18 16 17 ax-mp FFn
19 frn F:CranFC
20 16 19 ax-mp ranFC
21 df-ima F02π=ranF02π
22 1 reseq1i F02π=zeiz02π
23 0xr 0*
24 2re 2
25 pire π
26 24 25 remulcli 2π
27 elioc2 0*2πz02πz0<zz2π
28 23 26 27 mp2an z02πz0<zz2π
29 28 simp1bi z02πz
30 29 ssriv 02π
31 resmpt 02πzeiz02π=z02πeiz
32 30 31 ax-mp zeiz02π=z02πeiz
33 22 32 eqtri F02π=z02πeiz
34 33 rneqi ranF02π=ranz02πeiz
35 0re 0
36 eqid z02πeiz=z02πeiz
37 26 recni 2π
38 37 addlidi 0+2π=2π
39 38 oveq2i 00+2π=02π
40 39 eqcomi 02π=00+2π
41 36 2 40 efif1o 0z02πeiz:02π1-1 ontoC
42 35 41 ax-mp z02πeiz:02π1-1 ontoC
43 f1ofo z02πeiz:02π1-1 ontoCz02πeiz:02πontoC
44 forn z02πeiz:02πontoCranz02πeiz=C
45 42 43 44 mp2b ranz02πeiz=C
46 34 45 eqtri ranF02π=C
47 21 46 eqtri F02π=C
48 imassrn F02πranF
49 47 48 eqsstrri CranF
50 20 49 eqssi ranF=C
51 df-fo F:ontoCFFnranF=C
52 18 50 51 mpbir2an F:ontoC