Metamath Proof Explorer


Theorem elfz0fzfz0

Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018)

Ref Expression
Assertion elfz0fzfz0 M0LNLXM0N

Proof

Step Hyp Ref Expression
1 elfz2nn0 M0LM0L0ML
2 elfz2 NLXLXNLNNX
3 nn0re M0M
4 nn0re L0L
5 zre NN
6 3 4 5 3anim123i M0L0NMLN
7 6 3expa M0L0NMLN
8 letr MLNMLLNMN
9 7 8 syl M0L0NMLLNMN
10 simplll M0L0NMNM0
11 simpr M0L0NN
12 11 adantr M0L0NMNN
13 elnn0z M0M0M
14 0red MN0
15 zre MM
16 15 adantr MNM
17 5 adantl MNN
18 letr 0MN0MMN0N
19 14 16 17 18 syl3anc MN0MMN0N
20 19 exp4b MN0MMN0N
21 20 com23 M0MNMN0N
22 21 imp M0MNMN0N
23 13 22 sylbi M0NMN0N
24 23 adantr M0L0NMN0N
25 24 imp M0L0NMN0N
26 25 imp M0L0NMN0N
27 elnn0z N0N0N
28 12 26 27 sylanbrc M0L0NMNN0
29 simpr M0L0NMNMN
30 10 28 29 3jca M0L0NMNM0N0MN
31 30 ex M0L0NMNM0N0MN
32 9 31 syld M0L0NMLLNM0N0MN
33 32 exp4b M0L0NMLLNM0N0MN
34 33 com23 M0L0MLNLNM0N0MN
35 34 3impia M0L0MLNLNM0N0MN
36 35 com13 LNNM0L0MLM0N0MN
37 36 adantr LNNXNM0L0MLM0N0MN
38 37 com12 NLNNXM0L0MLM0N0MN
39 38 3ad2ant3 LXNLNNXM0L0MLM0N0MN
40 39 imp LXNLNNXM0L0MLM0N0MN
41 2 40 sylbi NLXM0L0MLM0N0MN
42 41 com12 M0L0MLNLXM0N0MN
43 1 42 sylbi M0LNLXM0N0MN
44 43 imp M0LNLXM0N0MN
45 elfz2nn0 M0NM0N0MN
46 44 45 sylibr M0LNLXM0N