Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | elfz0fzfz0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 | |
|
2 | elfz2 | |
|
3 | nn0re | |
|
4 | nn0re | |
|
5 | zre | |
|
6 | 3 4 5 | 3anim123i | |
7 | 6 | 3expa | |
8 | letr | |
|
9 | 7 8 | syl | |
10 | simplll | |
|
11 | simpr | |
|
12 | 11 | adantr | |
13 | elnn0z | |
|
14 | 0red | |
|
15 | zre | |
|
16 | 15 | adantr | |
17 | 5 | adantl | |
18 | letr | |
|
19 | 14 16 17 18 | syl3anc | |
20 | 19 | exp4b | |
21 | 20 | com23 | |
22 | 21 | imp | |
23 | 13 22 | sylbi | |
24 | 23 | adantr | |
25 | 24 | imp | |
26 | 25 | imp | |
27 | elnn0z | |
|
28 | 12 26 27 | sylanbrc | |
29 | simpr | |
|
30 | 10 28 29 | 3jca | |
31 | 30 | ex | |
32 | 9 31 | syld | |
33 | 32 | exp4b | |
34 | 33 | com23 | |
35 | 34 | 3impia | |
36 | 35 | com13 | |
37 | 36 | adantr | |
38 | 37 | com12 | |
39 | 38 | 3ad2ant3 | |
40 | 39 | imp | |
41 | 2 40 | sylbi | |
42 | 41 | com12 | |
43 | 1 42 | sylbi | |
44 | 43 | imp | |
45 | elfz2nn0 | |
|
46 | 44 45 | sylibr | |