Metamath Proof Explorer


Theorem ellines

Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion ellines A LinesEE n p 𝔼 n q 𝔼 n p q A = p Line q

Proof

Step Hyp Ref Expression
1 elex A LinesEE A V
2 ovex p Line q V
3 eleq1 A = p Line q A V p Line q V
4 2 3 mpbiri A = p Line q A V
5 4 adantl p q A = p Line q A V
6 5 rexlimivw q 𝔼 n p q A = p Line q A V
7 6 a1i n p 𝔼 n q 𝔼 n p q A = p Line q A V
8 7 rexlimivv n p 𝔼 n q 𝔼 n p q A = p Line q A V
9 eleq1 x = A x LinesEE A LinesEE
10 eqeq1 x = A x = p Line q A = p Line q
11 10 anbi2d x = A p q x = p Line q p q A = p Line q
12 11 rexbidv x = A q 𝔼 n p q x = p Line q q 𝔼 n p q A = p Line q
13 12 2rexbidv x = A n p 𝔼 n q 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q A = p Line q
14 df-lines2 LinesEE = ran Line
15 df-line2 Line = p q x | n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
16 15 rneqi ran Line = ran p q x | n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
17 rnoprab ran p q x | n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 = x | p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
18 14 16 17 3eqtri LinesEE = x | p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
19 18 eleq2i x LinesEE x x | p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
20 abid x x | p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
21 df-rex n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 n n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
22 21 2exbii p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 p q n n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
23 exrot3 n p q q 𝔼 n n p 𝔼 n p q x = p Line q p q n q 𝔼 n n p 𝔼 n p q x = p Line q
24 r2ex n p 𝔼 n q 𝔼 n p q x = p Line q n p n p 𝔼 n q 𝔼 n p q x = p Line q
25 r19.42v q 𝔼 n n p 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q x = p Line q
26 df-rex q 𝔼 n n p 𝔼 n p q x = p Line q q q 𝔼 n n p 𝔼 n p q x = p Line q
27 25 26 bitr3i n p 𝔼 n q 𝔼 n p q x = p Line q q q 𝔼 n n p 𝔼 n p q x = p Line q
28 27 2exbii n p n p 𝔼 n q 𝔼 n p q x = p Line q n p q q 𝔼 n n p 𝔼 n p q x = p Line q
29 24 28 bitri n p 𝔼 n q 𝔼 n p q x = p Line q n p q q 𝔼 n n p 𝔼 n p q x = p Line q
30 anass q 𝔼 n n p 𝔼 n p q x = p Line q q 𝔼 n n p 𝔼 n p q x = p Line q
31 anass q 𝔼 n n p 𝔼 n p q x = p Line q q 𝔼 n n p 𝔼 n p q x = p Line q
32 simplrl q 𝔼 n n p 𝔼 n p q n
33 simplrr q 𝔼 n n p 𝔼 n p q p 𝔼 n
34 simpll q 𝔼 n n p 𝔼 n p q q 𝔼 n
35 simpr q 𝔼 n n p 𝔼 n p q p q
36 33 34 35 3jca q 𝔼 n n p 𝔼 n p q p 𝔼 n q 𝔼 n p q
37 32 36 jca q 𝔼 n n p 𝔼 n p q n p 𝔼 n q 𝔼 n p q
38 simpr2 n p 𝔼 n q 𝔼 n p q q 𝔼 n
39 simpl n p 𝔼 n q 𝔼 n p q n
40 simpr1 n p 𝔼 n q 𝔼 n p q p 𝔼 n
41 38 39 40 jca32 n p 𝔼 n q 𝔼 n p q q 𝔼 n n p 𝔼 n
42 simpr3 n p 𝔼 n q 𝔼 n p q p q
43 41 42 jca n p 𝔼 n q 𝔼 n p q q 𝔼 n n p 𝔼 n p q
44 37 43 impbii q 𝔼 n n p 𝔼 n p q n p 𝔼 n q 𝔼 n p q
45 44 anbi1i q 𝔼 n n p 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q x = p Line q
46 31 45 bitr3i q 𝔼 n n p 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q x = p Line q
47 30 46 bitr3i q 𝔼 n n p 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q x = p Line q
48 fvline n p 𝔼 n q 𝔼 n p q p Line q = x | x Colinear p q
49 opex p q V
50 dfec2 p q V p q Colinear -1 = x | p q Colinear -1 x
51 49 50 ax-mp p q Colinear -1 = x | p q Colinear -1 x
52 vex x V
53 49 52 brcnv p q Colinear -1 x x Colinear p q
54 53 abbii x | p q Colinear -1 x = x | x Colinear p q
55 51 54 eqtri p q Colinear -1 = x | x Colinear p q
56 48 55 eqtr4di n p 𝔼 n q 𝔼 n p q p Line q = p q Colinear -1
57 56 eqeq2d n p 𝔼 n q 𝔼 n p q x = p Line q x = p q Colinear -1
58 57 pm5.32i n p 𝔼 n q 𝔼 n p q x = p Line q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
59 anass n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 n p 𝔼 n q 𝔼 n p q x = p q Colinear -1
60 47 58 59 3bitrri n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 q 𝔼 n n p 𝔼 n p q x = p Line q
61 60 3exbii p q n n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 p q n q 𝔼 n n p 𝔼 n p q x = p Line q
62 23 29 61 3bitr4ri p q n n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 n p 𝔼 n q 𝔼 n p q x = p Line q
63 22 62 bitri p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 n p 𝔼 n q 𝔼 n p q x = p Line q
64 20 63 bitri x x | p q n p 𝔼 n q 𝔼 n p q x = p q Colinear -1 n p 𝔼 n q 𝔼 n p q x = p Line q
65 19 64 bitri x LinesEE n p 𝔼 n q 𝔼 n p q x = p Line q
66 9 13 65 vtoclbg A V A LinesEE n p 𝔼 n q 𝔼 n p q A = p Line q
67 1 8 66 pm5.21nii A LinesEE n p 𝔼 n q 𝔼 n p q A = p Line q