Metamath Proof Explorer


Theorem ellines

Description: Membership in the set of all lines. (Contributed by Scott Fenton, 28-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion ellines ALinesEEnp𝔼nq𝔼npqA=pLineq

Proof

Step Hyp Ref Expression
1 elex ALinesEEAV
2 ovex pLineqV
3 eleq1 A=pLineqAVpLineqV
4 2 3 mpbiri A=pLineqAV
5 4 adantl pqA=pLineqAV
6 5 rexlimivw q𝔼npqA=pLineqAV
7 6 a1i np𝔼nq𝔼npqA=pLineqAV
8 7 rexlimivv np𝔼nq𝔼npqA=pLineqAV
9 eleq1 x=AxLinesEEALinesEE
10 eqeq1 x=Ax=pLineqA=pLineq
11 10 anbi2d x=Apqx=pLineqpqA=pLineq
12 11 rexbidv x=Aq𝔼npqx=pLineqq𝔼npqA=pLineq
13 12 2rexbidv x=Anp𝔼nq𝔼npqx=pLineqnp𝔼nq𝔼npqA=pLineq
14 df-lines2 LinesEE=ranLine
15 df-line2 Line=pqx|np𝔼nq𝔼npqx=pqColinear-1
16 15 rneqi ranLine=ranpqx|np𝔼nq𝔼npqx=pqColinear-1
17 rnoprab ranpqx|np𝔼nq𝔼npqx=pqColinear-1=x|pqnp𝔼nq𝔼npqx=pqColinear-1
18 14 16 17 3eqtri LinesEE=x|pqnp𝔼nq𝔼npqx=pqColinear-1
19 18 eleq2i xLinesEExx|pqnp𝔼nq𝔼npqx=pqColinear-1
20 abid xx|pqnp𝔼nq𝔼npqx=pqColinear-1pqnp𝔼nq𝔼npqx=pqColinear-1
21 df-rex np𝔼nq𝔼npqx=pqColinear-1nnp𝔼nq𝔼npqx=pqColinear-1
22 21 2exbii pqnp𝔼nq𝔼npqx=pqColinear-1pqnnp𝔼nq𝔼npqx=pqColinear-1
23 exrot3 npqq𝔼nnp𝔼npqx=pLineqpqnq𝔼nnp𝔼npqx=pLineq
24 r2ex np𝔼nq𝔼npqx=pLineqnpnp𝔼nq𝔼npqx=pLineq
25 r19.42v q𝔼nnp𝔼npqx=pLineqnp𝔼nq𝔼npqx=pLineq
26 df-rex q𝔼nnp𝔼npqx=pLineqqq𝔼nnp𝔼npqx=pLineq
27 25 26 bitr3i np𝔼nq𝔼npqx=pLineqqq𝔼nnp𝔼npqx=pLineq
28 27 2exbii npnp𝔼nq𝔼npqx=pLineqnpqq𝔼nnp𝔼npqx=pLineq
29 24 28 bitri np𝔼nq𝔼npqx=pLineqnpqq𝔼nnp𝔼npqx=pLineq
30 anass q𝔼nnp𝔼npqx=pLineqq𝔼nnp𝔼npqx=pLineq
31 anass q𝔼nnp𝔼npqx=pLineqq𝔼nnp𝔼npqx=pLineq
32 simplrl q𝔼nnp𝔼npqn
33 simplrr q𝔼nnp𝔼npqp𝔼n
34 simpll q𝔼nnp𝔼npqq𝔼n
35 simpr q𝔼nnp𝔼npqpq
36 33 34 35 3jca q𝔼nnp𝔼npqp𝔼nq𝔼npq
37 32 36 jca q𝔼nnp𝔼npqnp𝔼nq𝔼npq
38 simpr2 np𝔼nq𝔼npqq𝔼n
39 simpl np𝔼nq𝔼npqn
40 simpr1 np𝔼nq𝔼npqp𝔼n
41 38 39 40 jca32 np𝔼nq𝔼npqq𝔼nnp𝔼n
42 simpr3 np𝔼nq𝔼npqpq
43 41 42 jca np𝔼nq𝔼npqq𝔼nnp𝔼npq
44 37 43 impbii q𝔼nnp𝔼npqnp𝔼nq𝔼npq
45 44 anbi1i q𝔼nnp𝔼npqx=pLineqnp𝔼nq𝔼npqx=pLineq
46 31 45 bitr3i q𝔼nnp𝔼npqx=pLineqnp𝔼nq𝔼npqx=pLineq
47 30 46 bitr3i q𝔼nnp𝔼npqx=pLineqnp𝔼nq𝔼npqx=pLineq
48 fvline np𝔼nq𝔼npqpLineq=x|xColinearpq
49 opex pqV
50 dfec2 pqVpqColinear-1=x|pqColinear-1x
51 49 50 ax-mp pqColinear-1=x|pqColinear-1x
52 vex xV
53 49 52 brcnv pqColinear-1xxColinearpq
54 53 abbii x|pqColinear-1x=x|xColinearpq
55 51 54 eqtri pqColinear-1=x|xColinearpq
56 48 55 eqtr4di np𝔼nq𝔼npqpLineq=pqColinear-1
57 56 eqeq2d np𝔼nq𝔼npqx=pLineqx=pqColinear-1
58 57 pm5.32i np𝔼nq𝔼npqx=pLineqnp𝔼nq𝔼npqx=pqColinear-1
59 anass np𝔼nq𝔼npqx=pqColinear-1np𝔼nq𝔼npqx=pqColinear-1
60 47 58 59 3bitrri np𝔼nq𝔼npqx=pqColinear-1q𝔼nnp𝔼npqx=pLineq
61 60 3exbii pqnnp𝔼nq𝔼npqx=pqColinear-1pqnq𝔼nnp𝔼npqx=pLineq
62 23 29 61 3bitr4ri pqnnp𝔼nq𝔼npqx=pqColinear-1np𝔼nq𝔼npqx=pLineq
63 22 62 bitri pqnp𝔼nq𝔼npqx=pqColinear-1np𝔼nq𝔼npqx=pLineq
64 20 63 bitri xx|pqnp𝔼nq𝔼npqx=pqColinear-1np𝔼nq𝔼npqx=pLineq
65 19 64 bitri xLinesEEnp𝔼nq𝔼npqx=pLineq
66 9 13 65 vtoclbg AVALinesEEnp𝔼nq𝔼npqA=pLineq
67 1 8 66 pm5.21nii ALinesEEnp𝔼nq𝔼npqA=pLineq