Metamath Proof Explorer


Theorem elmthm

Description: A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016)

Ref Expression
Hypotheses mthmval.r R = mStRed T
mthmval.j J = mPPSt T
mthmval.u U = mThm T
Assertion elmthm X U x J R x = R X

Proof

Step Hyp Ref Expression
1 mthmval.r R = mStRed T
2 mthmval.j J = mPPSt T
3 mthmval.u U = mThm T
4 1 2 3 mthmval U = R -1 R J
5 4 eleq2i X U X R -1 R J
6 eqid mPreSt T = mPreSt T
7 6 1 msrf R : mPreSt T mPreSt T
8 ffn R : mPreSt T mPreSt T R Fn mPreSt T
9 7 8 ax-mp R Fn mPreSt T
10 elpreima R Fn mPreSt T X R -1 R J X mPreSt T R X R J
11 9 10 ax-mp X R -1 R J X mPreSt T R X R J
12 6 2 mppspst J mPreSt T
13 fvelimab R Fn mPreSt T J mPreSt T R X R J x J R x = R X
14 9 12 13 mp2an R X R J x J R x = R X
15 14 anbi2i X mPreSt T R X R J X mPreSt T x J R x = R X
16 12 sseli x J x mPreSt T
17 6 1 msrrcl R x = R X x mPreSt T X mPreSt T
18 16 17 syl5ibcom x J R x = R X X mPreSt T
19 18 rexlimiv x J R x = R X X mPreSt T
20 19 pm4.71ri x J R x = R X X mPreSt T x J R x = R X
21 15 20 bitr4i X mPreSt T R X R J x J R x = R X
22 5 11 21 3bitri X U x J R x = R X