Metamath Proof Explorer


Theorem eloprabgaOLD

Description: Obsolete version of eloprabga as of 15-Oct-2024. (Contributed by NM, 14-Sep-1999) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 19-Dec-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis eloprabga.1 x=Ay=Bz=Cφψ
Assertion eloprabgaOLD AVBWCXABCxyz|φψ

Proof

Step Hyp Ref Expression
1 eloprabga.1 x=Ay=Bz=Cφψ
2 elex AVAV
3 elex BWBV
4 elex CXCV
5 opex ABCV
6 simpr AVBVCVw=ABCw=ABC
7 6 eqeq1d AVBVCVw=ABCw=xyzABC=xyz
8 eqcom ABC=xyzxyz=ABC
9 vex xV
10 vex yV
11 vex zV
12 9 10 11 otth2 xyz=ABCx=Ay=Bz=C
13 8 12 bitri ABC=xyzx=Ay=Bz=C
14 7 13 bitrdi AVBVCVw=ABCw=xyzx=Ay=Bz=C
15 14 anbi1d AVBVCVw=ABCw=xyzφx=Ay=Bz=Cφ
16 1 pm5.32i x=Ay=Bz=Cφx=Ay=Bz=Cψ
17 15 16 bitrdi AVBVCVw=ABCw=xyzφx=Ay=Bz=Cψ
18 17 3exbidv AVBVCVw=ABCxyzw=xyzφxyzx=Ay=Bz=Cψ
19 df-oprab xyz|φ=w|xyzw=xyzφ
20 19 eleq2i wxyz|φww|xyzw=xyzφ
21 abid ww|xyzw=xyzφxyzw=xyzφ
22 20 21 bitr2i xyzw=xyzφwxyz|φ
23 eleq1 w=ABCwxyz|φABCxyz|φ
24 22 23 bitrid w=ABCxyzw=xyzφABCxyz|φ
25 24 adantl AVBVCVw=ABCxyzw=xyzφABCxyz|φ
26 19.41vvv xyzx=Ay=Bz=Cψxyzx=Ay=Bz=Cψ
27 elisset AVxx=A
28 elisset BVyy=B
29 elisset CVzz=C
30 27 28 29 3anim123i AVBVCVxx=Ayy=Bzz=C
31 eeeanv xyzx=Ay=Bz=Cxx=Ayy=Bzz=C
32 30 31 sylibr AVBVCVxyzx=Ay=Bz=C
33 32 biantrurd AVBVCVψxyzx=Ay=Bz=Cψ
34 26 33 bitr4id AVBVCVxyzx=Ay=Bz=Cψψ
35 34 adantr AVBVCVw=ABCxyzx=Ay=Bz=Cψψ
36 18 25 35 3bitr3d AVBVCVw=ABCABCxyz|φψ
37 36 expcom w=ABCAVBVCVABCxyz|φψ
38 5 37 vtocle AVBVCVABCxyz|φψ
39 2 3 4 38 syl3an AVBWCXABCxyz|φψ