Description: The Erdős-Szekeres theorem. For any injective sequence F on the reals of length at least ( R - 1 ) x. ( S - 1 ) + 1 , there is either a subsequence of length at least R on which F is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least S on which F is decreasing (i.e. a < ,`' < ` order isomorphism, recalling that ` ``' < ` is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | erdsze.n | |
|
erdsze.f | |
||
erdsze.r | |
||
erdsze.s | |
||
erdsze.l | |
||
Assertion | erdsze | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erdsze.n | |
|
2 | erdsze.f | |
|
3 | erdsze.r | |
|
4 | erdsze.s | |
|
5 | erdsze.l | |
|
6 | reseq2 | |
|
7 | isoeq1 | |
|
8 | 6 7 | syl | |
9 | isoeq4 | |
|
10 | imaeq2 | |
|
11 | isoeq5 | |
|
12 | 10 11 | syl | |
13 | 8 9 12 | 3bitrd | |
14 | elequ2 | |
|
15 | 13 14 | anbi12d | |
16 | 15 | cbvrabv | |
17 | oveq2 | |
|
18 | 17 | pweqd | |
19 | elequ1 | |
|
20 | 19 | anbi2d | |
21 | 18 20 | rabeqbidv | |
22 | 16 21 | eqtrid | |
23 | 22 | imaeq2d | |
24 | 23 | supeq1d | |
25 | 24 | cbvmptv | |
26 | isoeq1 | |
|
27 | 6 26 | syl | |
28 | isoeq4 | |
|
29 | isoeq5 | |
|
30 | 10 29 | syl | |
31 | 27 28 30 | 3bitrd | |
32 | 31 14 | anbi12d | |
33 | 32 | cbvrabv | |
34 | 19 | anbi2d | |
35 | 18 34 | rabeqbidv | |
36 | 33 35 | eqtrid | |
37 | 36 | imaeq2d | |
38 | 37 | supeq1d | |
39 | 38 | cbvmptv | |
40 | eqid | |
|
41 | 1 2 25 39 40 3 4 5 | erdszelem11 | |