Metamath Proof Explorer


Theorem erdsze

Description: The Erdős-Szekeres theorem. For any injective sequence F on the reals of length at least ( R - 1 ) x. ( S - 1 ) + 1 , there is either a subsequence of length at least R on which F is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least S on which F is decreasing (i.e. a < ,`' < ` order isomorphism, recalling that ` ``' < ` is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdsze.r φR
erdsze.s φS
erdsze.l φR1S1<N
Assertion erdsze φs𝒫1NRsFsIsom<,<sFsSsFsIsom<,<-1sFs

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdsze.r φR
4 erdsze.s φS
5 erdsze.l φR1S1<N
6 reseq2 w=yFw=Fy
7 isoeq1 Fw=FyFwIsom<,<wFwFyIsom<,<wFw
8 6 7 syl w=yFwIsom<,<wFwFyIsom<,<wFw
9 isoeq4 w=yFyIsom<,<wFwFyIsom<,<yFw
10 imaeq2 w=yFw=Fy
11 isoeq5 Fw=FyFyIsom<,<yFwFyIsom<,<yFy
12 10 11 syl w=yFyIsom<,<yFwFyIsom<,<yFy
13 8 9 12 3bitrd w=yFwIsom<,<wFwFyIsom<,<yFy
14 elequ2 w=yzwzy
15 13 14 anbi12d w=yFwIsom<,<wFwzwFyIsom<,<yFyzy
16 15 cbvrabv w𝒫1z|FwIsom<,<wFwzw=y𝒫1z|FyIsom<,<yFyzy
17 oveq2 z=x1z=1x
18 17 pweqd z=x𝒫1z=𝒫1x
19 elequ1 z=xzyxy
20 19 anbi2d z=xFyIsom<,<yFyzyFyIsom<,<yFyxy
21 18 20 rabeqbidv z=xy𝒫1z|FyIsom<,<yFyzy=y𝒫1x|FyIsom<,<yFyxy
22 16 21 eqtrid z=xw𝒫1z|FwIsom<,<wFwzw=y𝒫1x|FyIsom<,<yFyxy
23 22 imaeq2d z=x.w𝒫1z|FwIsom<,<wFwzw=.y𝒫1x|FyIsom<,<yFyxy
24 23 supeq1d z=xsup.w𝒫1z|FwIsom<,<wFwzw<=sup.y𝒫1x|FyIsom<,<yFyxy<
25 24 cbvmptv z1Nsup.w𝒫1z|FwIsom<,<wFwzw<=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
26 isoeq1 Fw=FyFwIsom<,<-1wFwFyIsom<,<-1wFw
27 6 26 syl w=yFwIsom<,<-1wFwFyIsom<,<-1wFw
28 isoeq4 w=yFyIsom<,<-1wFwFyIsom<,<-1yFw
29 isoeq5 Fw=FyFyIsom<,<-1yFwFyIsom<,<-1yFy
30 10 29 syl w=yFyIsom<,<-1yFwFyIsom<,<-1yFy
31 27 28 30 3bitrd w=yFwIsom<,<-1wFwFyIsom<,<-1yFy
32 31 14 anbi12d w=yFwIsom<,<-1wFwzwFyIsom<,<-1yFyzy
33 32 cbvrabv w𝒫1z|FwIsom<,<-1wFwzw=y𝒫1z|FyIsom<,<-1yFyzy
34 19 anbi2d z=xFyIsom<,<-1yFyzyFyIsom<,<-1yFyxy
35 18 34 rabeqbidv z=xy𝒫1z|FyIsom<,<-1yFyzy=y𝒫1x|FyIsom<,<-1yFyxy
36 33 35 eqtrid z=xw𝒫1z|FwIsom<,<-1wFwzw=y𝒫1x|FyIsom<,<-1yFyxy
37 36 imaeq2d z=x.w𝒫1z|FwIsom<,<-1wFwzw=.y𝒫1x|FyIsom<,<-1yFyxy
38 37 supeq1d z=xsup.w𝒫1z|FwIsom<,<-1wFwzw<=sup.y𝒫1x|FyIsom<,<-1yFyxy<
39 38 cbvmptv z1Nsup.w𝒫1z|FwIsom<,<-1wFwzw<=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
40 eqid n1Nz1Nsup.w𝒫1z|FwIsom<,<wFwzw<nz1Nsup.w𝒫1z|FwIsom<,<-1wFwzw<n=n1Nz1Nsup.w𝒫1z|FwIsom<,<wFwzw<nz1Nsup.w𝒫1z|FwIsom<,<-1wFwzw<n
41 1 2 25 39 40 3 4 5 erdszelem11 φs𝒫1NRsFsIsom<,<sFsSsFsIsom<,<-1sFs