| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eropr.1 |
|
| 2 |
|
eropr.2 |
|
| 3 |
|
eropr.3 |
|
| 4 |
|
eropr.4 |
|
| 5 |
|
eropr.5 |
|
| 6 |
|
eropr.6 |
|
| 7 |
|
eropr.7 |
|
| 8 |
|
eropr.8 |
|
| 9 |
|
eropr.9 |
|
| 10 |
|
eropr.10 |
|
| 11 |
|
eropr.11 |
|
| 12 |
|
eropr.12 |
|
| 13 |
|
eropr.13 |
|
| 14 |
|
eropr.14 |
|
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12
|
erovlem |
|
| 16 |
15
|
3ad2ant1 |
|
| 17 |
|
simprl |
|
| 18 |
17
|
eqeq1d |
|
| 19 |
|
simprr |
|
| 20 |
19
|
eqeq1d |
|
| 21 |
18 20
|
anbi12d |
|
| 22 |
21
|
anbi1d |
|
| 23 |
22
|
2rexbidv |
|
| 24 |
23
|
iotabidv |
|
| 25 |
|
ecelqsg |
|
| 26 |
25 1
|
eleqtrrdi |
|
| 27 |
13 26
|
sylan |
|
| 28 |
27
|
3adant3 |
|
| 29 |
|
ecelqsg |
|
| 30 |
29 2
|
eleqtrrdi |
|
| 31 |
14 30
|
sylan |
|
| 32 |
31
|
3adant2 |
|
| 33 |
|
iotaex |
|
| 34 |
33
|
a1i |
|
| 35 |
16 24 28 32 34
|
ovmpod |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
36 37
|
pm3.2i |
|
| 39 |
|
eqid |
|
| 40 |
38 39
|
pm3.2i |
|
| 41 |
|
eceq1 |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
42
|
anbi1d |
|
| 44 |
|
oveq1 |
|
| 45 |
44
|
eceq1d |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
43 46
|
anbi12d |
|
| 48 |
|
eceq1 |
|
| 49 |
48
|
eqeq2d |
|
| 50 |
49
|
anbi2d |
|
| 51 |
|
oveq2 |
|
| 52 |
51
|
eceq1d |
|
| 53 |
52
|
eqeq2d |
|
| 54 |
50 53
|
anbi12d |
|
| 55 |
47 54
|
rspc2ev |
|
| 56 |
40 55
|
mp3an3 |
|
| 57 |
56
|
3adant1 |
|
| 58 |
|
ecexg |
|
| 59 |
3 58
|
syl |
|
| 60 |
59
|
3ad2ant1 |
|
| 61 |
|
simp1 |
|
| 62 |
1 2 3 4 5 6 7 8 9 10 11
|
eroveu |
|
| 63 |
61 28 32 62
|
syl12anc |
|
| 64 |
|
simpr |
|
| 65 |
64
|
eqeq1d |
|
| 66 |
65
|
anbi2d |
|
| 67 |
66
|
2rexbidv |
|
| 68 |
60 63 67
|
iota2d |
|
| 69 |
57 68
|
mpbid |
|
| 70 |
35 69
|
eqtrd |
|